Trust-Based Security Routing Decision Method for Opportunistic Networks
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61300193, 61272125, 61601107); Natural Science Foundation of Hebei Province (F2015501105, F2017203307, F2015501122); Fundamental Research Funds for the Central Universities (N120323012)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper proposes a security opportunistic routing decision method based on trust mechanism (TOR). In this scheme, every node locally maintains a trust vector to record trust degree of other nodes, which indicates their ability of carry and forward messages. Using layered coin model and digital signature mechanism, the forwarding evidences of relay node signature are bound dynamically on message packet during the relay process, and the message carries evidence chain to the destination node. The node broadcasts periodically the trust vector with signature and time-stamp to network by flooding. Through multi-iteration, the read-only trust routing table (TRT) with multidimensional row vectors is built on every node, which will become the key-player of selecting the next-hop relay node and dividing copy number. The node with greater trust degree is taken as the next-hop relay node. Therefore, the message can be delivered to the destination along the direction of trust gradient increment. Simulation results show that compared with existing algorithms, TOR algorithm can resist the network destruction behavior of malicious nodes and selfish nodes with higher probability of delivery and lower average delivery delay, and it only needs very small buffer and computing ability of node.

    Reference
    Related
    Cited by
Get Citation

李峰,司亚利,陈真,鲁宁,申利民.基于信任机制的机会网络安全路由决策方法.软件学报,2018,29(9):2829-2843

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 21,2015
  • Revised:August 29,2016
  • Adopted:
  • Online: April 11,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063