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# 6 CIFAR10-VGG16 556 % % b5 A It i A (O AEf A vF P 3 iR 2248 4k

R HR DMOS-Naocluster PACE DMOS-Best EA-Best DMOS-Median
55 (0.075,0.081) (0.159,0.105)  (0.079,0.055) (0.151,0.046)
65 (0.070,0.041) (0.160,0.123)  (0.060,0.042) (0.131,0.040)
75 (0.079,0.056) (0.145,0.112)  (0.061,0.062) (0.121,0.025)
85 (0.066,0.064) (0.155,0.101)  (0.066,0.057) (0.123,0.037)
95 (0.061,0.031) (0.140,0.085)  (0.066,0.041) (0.109,0.027)
105 (0.056,0.069) (0.147,0.090)  (0.060,0.055) (0.097,0.027)
115 (0.052,0.039) (0.152,0.109)  (0.053,0.071) (0.100,0.026)
125 (0.059,0.045) (0.130,0.100)  (0.042,0.020) (0.086,0.022)
135 (0.067,0.057) (0.118,0.092)  (0.056,0.047) (0.096,0.036)
145 (0.053,0.044) (0.103,0.090)  (003101012) (0.035,0.025 (0.086,0.018)
155 (0.047,0.045) (0.108,0.097)  (0.045,0.029) (0.085,0.029)
165 (0.047,0.028) (0.091,0.093)  (0.048,0.041) (0.080,0.018)
175 (0.057,0.061) (0.093,0.083)  (0.042,0.044 (0.081,0.021)
185 (0.039,0.035) (0.095,0.069) H (0.041,0.029)  (0.070,0.018)
195 (0.053,0.055) (0.085,0.065)  (0.032,0.021) (0.071,0.020)
205 (0.043,0.033) (0.080,0.050)  (0.029,0.018) (0.072,0.015)

* 7 CIFAR100-ResNet20 5256 % G b B AN 550 il i A 0 AE A 28 A 11 34 158 = A8 4L

pug e DMOS-Nocluster PACE DMOS-Best EA-Best DMOS-Median
350 (0.208,0.163) (0.256,0.202) 0.190,0.162 (0.184,0.145) (0.220,0.063)
450 (0.165,0.137) (0.214,0.158) H 0.157,0.135 (0.185,0.051)
550 (0.143,0.122) (0.182,0.147) (0.131,0.110) (0.164,0.041)
650 (0.127,0.099) (0.160,0.100) (0.117,0.090) (0.146,0.037)
750 (0.121,0.088) (0.140,0.098) (0.106,0.074) (0.129,0.034)
850 (0.114,0.089) (0.130,0.095) (0.099,0.094) (0.124,0.030)
950 (0.095,0.073) (0.111,0.090) (0.097,0.079) (0.111,0.027)
1050 (0.097,0.084) (0.105,0.082) (0.087,0.076) (0.109,0.026)
1150 (0.086,0.070) (0.097,0.081) (0.079,0.067) (0.081,0.063) (0.101,0.023)
1250 (0.090,0.068) (0.091,0.074) (0.083,0.064) (0.094,0.022)
1350 (0.084,0.070) (0.084,0.076) (0.079,0.065) (0.091,0.019)
1450 (0.075,0.063) (0.084,0.068) (0.075,0.059) (0.087,0.021)
1550 (0.073,0.057) (0.081,0.065) (0.072,0.058) (0.083,0.021)
1 650 (0.077,0.062) (0.085,0.063) (0.069,0.066) (0.079,0.016)
1750 (0.070,0.059) (0.083,0.061) (0.062,0.052) (0.079,0.022)
1850 (0.064,0.053) (0.077,0.060) (0.065,0.045) (0.076,0.018)
1950 (0.061,0.052) (0.076,0.060) (0.059,0.048) (0.071,0.014)
2050 (0.058,0.046) (0.075,0.059) (0.059,0.047) (0.058,0.047) (0.069,0.019)
% 8 Speech-Commands-DeepSpeech S5 5t %1 8- A~ 5 R 5 N R HE A R Al 1T 2815 22 AR 4L
PR DMOS-Nocluster PACE DMOS-Best EA-Best DMOS-Median
22 (0.420,0.448) (0.472,0.454) (0.361,0.433) (0.535,0.403)
86 (0.097,0.175) (0.077,0.084) (0.058,0.041) (0.150,0.035)
150 (0.058,0.043) (0.061,0.048) (0.056,0.028) (0.086,0.031)
214 (0.060,0.032) (0.050,0.031) (0.050,0.031) (0.065,0.026)
278 (0.046,0.029) (0.047,0.030) (0.044,0.026) (0.061,0.027)
342 (0.040,0.028) (0.045,0.030) (0.037,0.027) (0.057,0.025)
406 (0.037,0.029) (0.039,0.025) (0.035,0.032) (0.052,0.022)
470 (0.031,0.028) (0.039,0.024) (0.034,0.026) (0.044,0.021)
534 (0.029,0.023) (0.034,0.021) (0.025,0.021) 0.027,0.020 (0.040,0.013)
598 (0.029,0.022) (0.035,0.028) 0.028,0.022 H (0.037,0.015)
662 (0.024,0.020) (0.032,0.024) (0.023,0.016) (0.035,0.011)
726 (0.027,0.020) (0.031,0.025) (0.024,0.020) (0.034,0.010)
790 (0.023,0.014) (0.032,0.025) (0.022,0.018) (0.031,0.012)
854 (0.027,0.022) (0.030,0.026) (0.023,0.018) (0.031,0.012)
918 (0.022,0.019) (0.029,0.025) (0.019,0.021) (0.028,0.008)
982 (0.022,0.016) (0.028,0.026) (0.022,0.016) (0.027,0.010)
1046 (0.022,0.019) (0.027,0.024) (0.022,0.016) (0.026,0.008)
1110 0.018,0.013 (0.026,0.023) (0.020,0.017) (0.026,0.009)
1174 (0.027,0.027) (0.019,0.018) 0.018,0.012 (0.027,0.009)
1238 (0.019,0.017) (0.027,0.027) (0.018,0.012) - (0.026,0.008)
1302 (0.016,0.013) (0.023,0.023) (0.019,0.014) (0.024,0.008)
1366 (0.017,0.010) (0.023,0.022) (0.018,0.015) (0.017,0.014) (0.022,0.006)
1430 (0.017,0.012) (0.022,0.021) (0.018,0.015) (0.022,0.007)
1494 (0.016,0.015) (0.021,0.019) (0.016,0.010) (0.020,0.006)

1558 (0.016,0.013) (0.020,0.019) (0.018,0.013) (0.021,0.005)




2516 AR 2022 5% 33K F 7
#£ 9 ImageNet-VGG19 S5 %f % b 45N 2 Sk fan N\ (I AE A 2 o3 iR 2248 1k
WS DMOS-Nocluster PACE DMOS-Best EA-Best DMOS-Median
500 (0.525,0.241) (0.526,0.241) 0.517,0.241 (0.531,0.216)

1050 (0.360,0.237) (0.376,0.248) (0.361,0.235) (0.372,0.177)
2050 (0.272,0.204) (0.283,0.215) 0.267,0.20 (0.278,0.124)
3050 (0.212,0.171) (0.228,0.183) (0.209,0.173) (0.220,0.077)
4050 (0.177,0.148) (0.183,0.156) (0.173,0.141) (0.182,0.063)
5050 (0.150,0.122) (0.159,0.133) (0.151,0.124) (0.157,0.057)
6050 (0.137,0.111) (0.138,0.114) (0.135,0.113) (0.143,0.044)
7050 (0.119,0.096) (0.126,0.109) (0.121,0.099) (0.127,0.037)
8050 (0.112,0.092) (0.118,0.098) (0.111,0.091) (0.116,0.034)
9050 (0.103,0.085) (0.111,0.092) (0.101,0.083) (0.108,0.030)
10500 (0.098,0.079) (0.104,0.086) (0.095,0.080) (0.100,0.030)
11 500 0.092,0.075 (0.097,0.078) (0.090,0.074) (0.094,0.030)
12500 (0.091,0.075) (0.084,0.068) (0.086,0.069) (0.089,0.025)
13500 (0.081,0.066) (0.087,0.070) (0.081,0.066) (0.085,0.022)
14 500 (0.077,0.063) (0.083,0.067) (0.076,0.060) (0.080,0.021)
15500 (0.074,0.060) (0.079,0.064) (0.072,0.058) (0.076,0.021)
16 500 (0.075,0.062) (0.070,0.057) (0.070,0.056) (0.073,0.020)
17 500 (0.072,0.060) (0.066,0.054) (0.069,0.020)
18 500 (0.064,0.052) (0.069,0.058) (0.062,0.052) (0.066,0.019)
19 500 (0.061,0.050) (0.068,0.057) 0.060,0.048 (0.063,0.018)
20 500 (0.059,0.048) (0.065,0.056) (0.060,0.048) (0.061,0.018)
* 10 4FhZ HistiAL vk PACE 78 8 452 i %t % LR AIZR I ) Win/Tie/Loss 43 Ht

1D DMOS-Nocluster VS PACE DMOS-Best VS PACE EA-Best VS PACE DMOS-Median VS PACE

1 6/3/1 4/5/1

2 3/7/0 5/5/0 4/6/0

3 3/7/0

4 3/7/0

5 5/4/1 4/6/0 2/6/2

6 23/65/12 23/64/13 23/67/10

7 195/655/150 208/642/150 199/653/148

8 7/16/7 11/12/7 7/13/10

RALER T S INEEARF VIR B33 22 45 3, S LAT &S50 IR A\ 19 7 S5 HER 2k T
%72k E, DMOS-Nocluster, DMOS-Best, DMOE-Median, PACE J5VE7E 8 20 5236 wf % L] 144 45286 &A%
S0 3 S N 8 1K~ 40 22 43 5] 5.954%, 5.547%, 7.589% 71 8.473%, 5 PACE AHLL, X 3k i B AL T
2.519%, 2.926%, 0.884%(1)i% 7%, P33 (T 5 A 2 4 (PACE-DMOS-X)/PACE) 43 %l 4 29.73%, 34.53%,

10.43%. X [FFER I T DMOS J5 5t T B A4 iy 4 8 v PACE 1 RE A Bk

KA SATHEE T VRN br BRI R 22 45 R

Metric DM OS-Nocluster (%) DMOS Best (%) DMOS -Median (%) PACE (%)
AvVgACe 5.954 5547 7.589 8.473
TotalAcc 1.238 1.081 1.211 1.926
KMNC 10.520 10516 10.517 11.721
NBC 6.412 6.412 6.435 11.527
NC 3.157 3.149 3.143 11.471
SNAC 9.258 9.223 9.285 18.938
TKNC 14.526 14.394 14.438 26.676

/N (1) DMOS J7 iR A i 1) Pareto fi R A7 4R H S i 1O B BLAE e AR I 0, HLAETR . BRI lAR
ERIRBALS, ML BLA J5 1% PACE; (2) DMOS 5 K fif i Y Pareto s L i 4 ry, 1 E — SBCFRI A 47 SR 1 11 4500
R LB AT 7775 PACE, EAETE SIS BRI, (3) BURINREH WS IR E, WikFETs
AT RIS A5 2 T A P 1 2t R PR MR BEBOR, (BRI eI 4E |, DMOS J5 iR i i (1) Pareto
P, PhRE— AR AR RENS DR KRR ELA J7 1% PACE I

e RQ2: DMOS 7y i th IRy a1 A 70 M AR vl ff 3 o X7 o6 b vhE b e 0 4% 55 5L W S AR B 1 3K

e i?
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(1) Wil

A, HAT¥ DMOS-Best, DMOS-Median, DMOS-Nocluster 1 PACE 7 8 £ 5236 %} % 1 (1 52 56 &5
O 144 HHUE, 75 8 SS2ih N5 b3t 25 ks, 1-5 S S2ib w5 B 16 YL, 6 Sz 4 [ 18 K
SEEG, 7 SR % b 20 IREEE0) N EAARHER K 4 TR ZE. NC. NBC. SNAC. TKNC. KMNC i% 5 M3t
B i IR bR Al 5 22 3L 6 A A FE HEAT Scott-Knott ESD #5643 #71, LA#EFT DMOS J5 72: LA P U #5645 K & A 15
bl LA 3% B 7 722 L 4% 5 e R A S AR B Ay Ik v

(2) 4k

WE 2-E 7 FioR, SR ETVAAE BEARMER R IR A 5 R R RIS TR RN, R, B 5k
PR 4% I 2 e 5 A7 o 7 i I PE M. 45 R 17, DMOS-Best Al DMOS-Median Jj =78 4 FPillik 7 =5 1545 b
B i 22 i 2% T PACE (£ KMNC I, DMOS-Best il DMOS-Median 77 vk BAR A 3 8id PACE, B4
RARFFPL IS, H A AUER R IR 2 th BB PACE. WAL KM &AM EAE, Bk DMOS-
Best, DMOS-Median 771%: 5 PACE 45 HA5 IN#83 PACE, {HMAGZE It i) b fr 2k J2 T Aok &, DMOS 75 V:7E
6 MEbr LRI B AR M A TR 2 B R RS e, SR 11 38 34728 7 47K F, DMOS-Nocluster, DMOS-
Best, DMOE-Median, PACE J7i%:7t 8 20525 0t % JL v 144 4526 b1 1 3 Al 3R 45 22 43 41 1.238%, 1.081%,
1.211%7F1 1.926%, 5 PACE AL, X 3 #7243 I FI4BFK T 0.688%, 0.845%, 0.715%) 1% %, %I PACE [JF
Y4 T 5 43 99k 35.72%, 43.87%, 37.12%; DMOS-Nocluster, DMOS-Best, DMOE-Median, PACE Jj =7t 8 41
SLES R R ILTT 144 A5 B, 5 RPN 55 AR UE RSP 3R 22 53 ) 8.775%, 8.739%, 8.763%F1 16.067%, 5 PACE
A, X 3 My FRRAR T 7.292%, 7.328%, 7.304%(()i%2, %t PACE [K-F-34= T1iE & /> 5 4 45.39%,
45.61%, 45.46%. X [FFE U T DMOS 732k e (1 i

/INGE: (1) DMOS J5 v 3 H 1R 4 e 0% 6 AR PP DU H br I LE PACE 3 Hi I I3 1 45 30 4 82300 IR 4
MR, (2) HARINR TR T8N 3 R A N B HE R 2 (RORS HEASG T, % T ORAE IR 42 1 JC At 5T 5 SR R
AR AEAH A ELAT F 2 = L.

o RQ3: RALLEZ HEstlAS DMOS J5ik i) st sk i {2

(1) ®it

HTRTFERE UK Z HAs X DMOS ik oeik, A1 56K DMOS-Nocluster J7 %5 R EUR K1
DMOS-Best 75 % (K] DMOS-Nocluster 7512 B [#  /2 Pareto fZE4E 1 454 28 SR 3 N TR VR A S84 - 44 3% 22 B
NBIRRAE R B A5 5L, BRI T RSB X DMOS 7 ok, it LAE G RQ 1 H 5 DMOS-Best J7 11347 Lt
EOYNE AR MRS N HERR R . S ARUER 2 DL S AT 05 % 25 LA 7 T VPl e T R e 22 5 AR5, k]
145 DMOS Jj 3K fift (1) Pareto fi## F1 RandomSearch J7 v 3K fift tH (W S 7E 1GD 8 4r LT ELEL, A2 HbnfiAb
£ BE VEAS SR IR A A i Sk R0 22 A

(2) &

5 DMOS-Nocluster f L. FATTEHL T DMOS-Nocluster sk 75 fift 5 H1 75 &-AN 285 530 3038 B A B9 Ve Aff 2241
VY 22 B /N AR AT S AR 3K DMOS-Nocluster 4 [ i 2. 3K 2-3 6 k%, DMOS-Nocluster 77 7% 1)
REMRIFE LG PACE ZE4FIR 2, BEWETE SE /D[R I B 450 1 50 B b ik 31358 22 SEAR A 1K1, {HIE 2 8% 25 T DMOS-
Best 772, M IR AR EA R AR 56 $5 45 K G, DMOS-Nocluster 575 DMOS-Best 5 4 3 % A 2.3 Lk
fie 22 5%, {0 DMOS-Best J7 VAR IR FET ST LY. R 5 ML H 42 : DMOS J7iE A EE T4l DNN
A 2R 5z 4% TR0 (V) AR A U, 1T g ek IO o [ 3 8 A D s TR B AR R R, DU BE 2
DRIk, 7R b, R SR 28 5 R ont D T AR R AT B o0 A () PR S (A [0 28 5t Dl N 1 o B o), A
132 HARA AR R 225 1045 BB 9 HERf. DRI ERATT I, 7R Se b Al I R rpr, 2 B FH 3R 8% Jat 4y Tk 4 %
AN B AT AT A, RS RAE.

L5 RandomSearch [y Lt 8¢, 4l 8 i<, RandomSearch 75 E4E 1GD &b b RIRIAEH A F e, DMOS J5ik
B # 4T RandomSearch. X 5t W74k K AR (M #2 F, RandomSearch J7 32 118 22 J7 1M % S R % ok, HLAgAA

© TEBREEEEIEDT  htp/ www. jos. org. cn



2518 BAEFIR 2022 54 BEAETH

AEBBA WL T s, XU R BB A& M TT . & RandomSearch FJLLEL S5 RAVL W] DMOS
JIiE 2 H bR A SR R L 2 A RS, SRAT IR AR AT SE LS 10 22 PR, R] IO T R A R 2 21 )
WU AL U, Bt A IS A F bR EEAT KA 0 21, BEAL IR 225 13 A BEHR B 15 3E 1) .

| I

’

—
& &

&

&
&
&

o
.y
&

[ 8 IGD FaAnitAd & ik

IGD

5 10 15 20 2

NG (1) BT R RENS A BUE IE DMOS A #3500 DNIN R B T30 1) 35 B bR 2805 I iR 22, 33 0 o0 b i
TR AR B 0 A, A2 BARRALIT Ur Ak, fR4E DMOS FvERIPERE, (2) Wil &G MMk B AR, *F
KA tHIHEE ) Pareto S UL$5 5 S8 B ORI B, ¢ B 2 2 M N 8 il B, AN — N m) LU i B LA
FR LSRRI AT A 2 1B M B8 11 1) H i)

o RQ4: DMOS J7 i W32 A7 i ) 4% 4] 2

(1) Wil

DMOS J7 ¥ [F I T8 47 14 32 B4R b AE S B IR M AR E R R BRdE . BB Z Btk b & 8 4
LI b, $55E DMOS Fl PACE #BM 4RI AR F Rk A% 1 000 AN Am A Kl 748, V1 i A s ER
PO ) B PR, E RN A0 1k, 5%, TATR DMOS Jy ik (i ] P85 45 R 5 PACE HHAT T L.

(2) &k

SH LRI 12, 55 1A B G ID 53R LR AE BT R, 28 2 31 R dE S A2 1 i #er- AR DMOS
TR AT SRR S R 1 000 AN (R T SR AR 2 (R B ) T, AT R B 2 PACE [ B )
B, DAL TG R R R VEN M R S N, R AT, (AR RS, KPS RN, BT IR N\ B
D7 VETEAT 53 1 WF 1) Bl A 4 (LA RS Sk 8 2 A ) izt /N - N hmvE i AR 1 36 P (R 5 &, DMOS 4
6 AN SEH N % b IR ) TR BN T B B Ik 3 5 vk PACE, R4- U6 T DMOS J7 3 i sk ;A i, DMOS 1Y
765 5 LI % Ll =T PACE, 70 7 5 5530 % b il T-28 il #iat 1d 22 (1000 43 2K) N E T £ H Fefitb b btk
RO A IR, SRR T PACE. # 8 5L % I, PACE i TR i 2 H A2 Hh I
AR RS rh ] R R T2, KRR AN T MMD-critic 5 B KL J7 V2 B IS 18] T4, f  S SUHAE M s2 36 )
% EMYERERBLIZ 5 T DMOS J5i%. DMOS J77%: M1 PACE J5:A4E 8 NS85t % E 4 Wik 1 000 Ak i
N (RYBSF I 4 43 A7 vl DL 3 1.2,

% 12 DMOS 1 PACE J7 2 [ I [6] - 45 23 #r

DMOS VS PACE(¥.17: s)
(85,203)
(86,113)

(86,48)

(93,202)
(106,120)
(146,233)

(4683,3591)
(132,1967)

AN (1) BT VR LA ST i N B 77 A I TR DT B /s T N CRR B AT R, R, Bt T2
R BE 27 31 ke N IE R 5 TE BT BRI SE B =G (2) R 2 HASHEAR ) DMOS J5 i (K3 A7 i [) JF 4 22

ONO U~ WNRQO
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WFE LT H A0 B 1 $E 77 v PACE.
4 7 g

4.1 DMOSKf#RIParetof BRI R B R
I 25 R A S U] T DMOS J7 A SK AR KRR TT 5E, BB AT 80k A S A6 I A MU RE ) 1
W72, (AFRATF AR R, 78R — R BN K AR £ 7 R 2 1 JFURE S 22 AN 55 (A& A 2800 I i A\
FRHER 2T B THRZE KRR ), (AP AL B M R R, H AT DMOS J7 VLK fif th s 800 T B AT i)k £ 77
P TG R — 0 4R T DMOS SRkt I AR i, FRATTRE SR 8G 45 AT 73— #r, 454
TLUUFI e,
(1)  EFRECERRO, S AE R TR B S AL N, AR PR AR A DI, AR PR RE AR AN 22 R
K MR R B I 2, B AMEZ R BE T AR 4 4k, VERE ZE S BE 2 N, T Y e B R 1
I E— @ FERERE, HH T &R I 3 B 7 28 2 TR TP I EE SRR AT AR BN, & AR R e 2
F X IFURZEHAZ /. i, S g RBOR, SRR R4 10 000 MFEAK 10 43 KB /- R 4,
1Al 800 Ze AT N, SRAf 1Y) Pareto f f Al 4 2 IR (K3 0F I R k4 T A
(2 SRR RS R Z, PR RN . SRR TR T A A R 2, X BT A 2R
A T (0 R AR A, 5 A 0 2 e . BRI, A R N IS B S g R A
BARTEA AR BRI T 1 VE RS AF & B RO IR iU, (R ke 2 AR A0 1 X T 25 8 /s
A IR IR AR
(3) DMOS J7ikfe %A AT AT A2 S p IR 4 I, SRR Pareto MRAERIRE T R, K &R EBR
DMOS Jj i} T IR LEIR N T X RFAE JEAT /NP S AT A R B0 1 % o il i A iR R R R AN, Jit
RT3 256 o i N TR A 5 T 4 I A N TR R TR A 22 A0 /0, S 2R TR0 1) &5 SR HTAH 250K, 1X
{5145 2R A BRICVE RS WA 4 (10 B8l 23 A BEAT VERR Al v, ERIsE g T 2 H AR IR PERE.
4.2 B
o B B
DA R D 32 Bk B DMOS J7 vk B S I S bl S8 wh SR A 1A B 0 10 K S T DA R Sk BT A S 45
RBEAT T VEAG (A SE I, Shy T A R g X SE g, 5T DMOS 75, FATTKHET Python i — S8 I 1)
JSAKE B e 1) B B VR AT SE N, 0 T ICAR X Ll v, FRATTSR T 3k ey g 5 ) YR R b e I ROAR
AR T I S 45 0 IR B A S B HEAT 5236, X T 20 VB A 5236 45 SR W P A7 A, T gm LSBT 2 Fh oy
XA I F RN, kg RIGTR. BAh, FESEIL R, BADN T W R AR #3EAT T AF 40 7.
o AN R P
AN A P 2 BRI TR AT A SRR X G, BT R P R E 2 o) AR AR DL AR DNIN B, S {8 A
) DNN #i28 AR 73 7 HAT B8 £ (2 MNIST, CIFAR-10, CIFAR-100, ImageNet F Speech-
Commands) I Zr 1T B A, (- T-O040 H AR IR, FRATE IS T 4 B8y, (HR 0 T 9> J0s Sk (v iy, &
ATTA o JSE AR R RTINS 45520 L CNIN A5 281 RNIN 45 28 (B! DeepSpeech)iX JUANJy T 2% 8 T #7 1l DNN B8 1A
Y. X1 A IR R 2% )R, FRATTANAS R 2 B p ik N, 60368 Bl R B N 98 2 28 2k
N, R LIk AN O . TS AR SCAS B SR DGR AT SR S DR, I
WL — S8 SCA 3 AT 55 A Kt v, LB 288 ) 00 (Gl A A2, B SN A VR S ) s 2> T R 4R K
(TRUARIE A RER T HR), PREAD R SAEE BN IEREBCR. A, fR 5 RN SCRTS AR Y
PG B 1 53 A 55 Bk AHARL: AR DI DNINASE R06T S A B4l 27 ) 21 1y o () J2 it A R REAEEAT R 28, JF4T 1
ZkR%E, DMOS wh o] LAfEIRSERE FiEAT 2 B ARk, R RS LIRS 18 1 450 AN 7% P AN 5] 25 500 DU A N 1)
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