ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.20, No.8, August 2009, pp.2113-2123 http://www.jos.org.cn
doi: 10.3724/SP.J.1001.2009.00573 Tel/Fax: +86-10-62562563
© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.

LU 22 254 2 TR 0 B A B 5 3 A8 MR ESS
EaEY Tww' I E! FER' K #F'

TR THEEHURRE HEOREBEIZR BFF 250101)
MY VRGBS TR LR Y 261061)

Semantic Description Framework for Architecture-Centric Model Transformation

HOU Jin-Kui'?*, WANG Hai-Yang', MA Jun', WAN Jian-Cheng', YANG Xiao'

'(School of Computer Science and Technology, Shandong University, Ji’nan 250101, China)
*(School of Computer and Communication Engineering, Weifang University, Weifang 261061, China)

+ Corresponding author: E-mail: hjk@mail.sdu.edu.cn

Hou JK, Wang HY, Ma J, Wan JC, Yang X. Semantic description framework for architecture-centric model
transformation. Journal of Software, 2009,20(8):2113-2123. http://www.jos.org.cn/1000-9825/573 .htm

Abstract: In this paper, the typed category theory is extended and combined with process algebra to provide a
unified description framework for the formal semantics of architecture-centric model transformations. The structural
semantics of architecture models are described within typed category diagrams, and the behavioral semantics are
represented by process traces affiliated to the categorical framework, and the mapping relations between component
models are formally described by morphisms and functors of category theory. The framework can be used for the
description, analysis and judgment of property preservation of model transformations, and thus make an effective
support for model-driven software development.

Key words: model-driven development; model transformation; software architecture; semantic description

W OE: A ERESEEARATY R s B 5 AR RIS AR R MR B A 645 X R
RAET —Fr 4 — 0935 XFRAE LR AR 69 454075 5Ly K AL 589k B R R 484K, 2L AT 4 38 U by S ok M A 04 EARAT 38
Sk ET AR A 4G B gt £ 2 R SERE IR 6 04 A4 B TR XALRG A IZAGRAE LR T A AR 4540 P MR 19 A
BREIR . ST AR R AT A A BR) 0 SR AR T R IR) 44 T

KRR AR BRSh A A ARA AR AR R 45 AR i

HREESES: TP301 CEKARIRED: A

1 Introduction

Model-Driven development (MDD) has become an active research area of software engineering!'}, which deals

with the complexity of software development by raising the level of abstraction. The correctness of model

« Supported by the National Natural Science Foundation of China under Grant No.60673130 ([E 5% [#k R} 22 3L 4r); the Key Science-
Technology Development Project of Shandong Province of China under Grant No.2008GG10001026 (111 448 RHE BT H)
Received 2008-04-22; Accepted 2008-10-07

© R

BRAKFEIFFEF httpi/ www, jos. org. en

2114 Journal of Sofiware ¥ %3k Vol.20, No.8, August 2009

transformations is a key issue of model-driven engineering. The general criteria about the correctness of model
transformations comprise syntactic correctness, syntactic completeness, termination, confluence and semantic
consistency!®’. There have already been comparatively mature solutions for the judgment of these criteria with the
exception of semantic consistency. How to ensure semantic consistency between the models before and after
transformation has become a key issue on the road of MDD becoming more mature.

As the standard for object-oriented modeling, the UML is still largely undefined from a semantic point of view,
which brings difficulties in such a scenario due to the ambiguity of models®!. That makes the modeling concepts
and their semantic specifications do not very well suit the starting point for some works of MDD, such as automatic
code generation and formal verification. Many researchers!'! believe that the current descriptions of high-level
models of MDD are neither complete nor accurate for lacking understandable formal semantic meanings, which
makes it difficult to achieve automatic model transformations, and also hard to build effective mechanisms for the
evaluation and verification on the transformations. The definition, description, and proof of semantic property
preservation of model transformation are still problems unresolved. An integrated semantic model for non-formal
modeling languages is still missing. The existing describing mechanisms for the constraints of property preservation

are all built for some specific scenarios!*™")

, which makes them not generic enough for more situations. All the facts
show that, the lack of description and calculation approaches for semantic properties currently is the main lacking
theory of model-driven software development, and to build a theory for semantic description and calculation
becomes the basis and urgency for its healthy and rapid development.

Category theory!™ provides the right level of mathematical abstraction to address languages for describing
software architectures, and its abstract framework provide correct semantics for the configuration of complex
systems from their component parts!®’. In this paper, based on the work by Fiadeiro and Lopes™, a unified semantic
description framework for architecture-centric models and their transformational relationships is proposed by
combining category theory with process algebra. It can be used for the description, analysis and judgment of
property preservation of model transformations.

The rest of this paper is organized as follows. In Section 2, formal semantics of component-based architecture
models are presented based on category theory and process algebra. Formal description of architecture-centric
model mapping is given in Section 3. A case study about a supply chain management system is shown in Section 4

to further explaining the ideas. The paper ends with conclusions and future works.
2 Formal Semantics of Architecture Models

In this paper, category theory is used as a basic framework for the semantic description of architecture models.
The basic knowledge about category theory can be found in Ref.[8], which is not repeated here. From the point of
view of describing and verifying semantic properties, the distinction between component and connector is often
subtle!’’!. In order to maintain regularity and simplicity, we do not distinguish between these categories at the
specification level, and both component and connector are generically called component.

Figure 1 depicts the architecture of a supply chain management system, which will be used to illustrate the
relevant concepts and models throughout the paper. Herein, we simplify the services and omit some details, and
only six components are contained: the shopping service (Shop), the store service (Store), the banking service
(Bank), the transporting service (Transport), the supplying service (Supplier) and the Email service (Email). The
Shop and the Store are combined together to form a composite component (ServiceSystem). The client component
(Client) can require purchasing goods by calling the method Sellltem provided by the Shop, and it also can require

returning goods by calling the method Recede. In an ongoing buying, the Shop first checks the store to make sure

© ‘hIERkE

B EITFIT httpa/ www, jos. org. cn

ekt SRR EM A T SR 1 0495 UG R AER 2115

whether the stock is sufficient or not. The buying will fail if the stock is insufficient. If the Store keeps the required
goods sufficiently, it will subtract the purchase quantity from the total stock. Then, the Shop will call the method
ProcPay provided by the Bank to require the payment of the customer. If the stock is insufficient or the total
quantity of the required goods is less than a fixed number, the Store will place an order to the Supplier after
checking. Moreover, the Shop also can inform the Bank of returning the payment of the customer through the
method Compensate. After the Bank confirms the paying, the Shop will inform the Transport through the method
Shipltem of transporting the goods to the customer. The Shop can also inform the Transport through the method
WithDraw of back transporting the goods. If the buying failed, the Shop will inform the Email service of sending an

apologetic message to the client component.

Transport Email
= 1
I :
S8 EHE S
= | 5
ZINES n
i Sellltem [ChkStore | [ChkStore |
Client > Shop [RcoStore |—» [RcoStote || Store
PT1 PT4 PT6 "
IRk
B SRCIIE
3 | = 3| |©
=1 O
el Qo Q
<2z
El|=
O

\ T ServiceSystem J
| !

Bank Supplier

Fig.1 Architecture depiction for a supply chain management system

2.1 Component specification
Process algebra (PA)!'® is used to formally describe the external behaviors of components in this paper. The
basic knowledge about PA can be found in Ref.[11]. The external behavioral trace of a component is expressed as a
state transition sequence BP=(SS,4S,TS), where SS={s,|0<i<n} is a finite set of component states, and s;,; and sz;,,
respectively represent the initial state and the final state of the component, and AS={q,|0<i<m} is a finite set of
component actions, and 7ScSSxA4SxSS is the finite set of state transitions which represent the interactive behavior
of the component. The trace (ay,a,,...,a,) will be called a complete external behavioral trace iff the transition set 7.S
defined as s¢—>,151> 052>+ .- (S0=S1nit>Sn=S Fina)-
Definition 1 (component signature). A component signature is a 8-tuple =(Cid,2,A,I fa,fp,D,BP), where
(1) Cid is the unique identifier of the component;
(2) 2=(S,0) is a data signature in the usual algebraic sense, i.e., S is a set of sort symbols and €2 is an
S xS-indexed family of function symbols;
(3) A is an S'xS-indexed family of attribute symbols, in which each attribute is typed by a data sort in S;
(4) [Iis an S™-indexed family of port symbols;
(5) fa: A—25is a set of total functions, which shows the properties of the attributes;

(6) fp: I'>25is a set of total functions, which shows the properties of the ports;

AAEFFTE http/ www, jos. org. en

© R

2116

Journal of Sofiware ¥ %3k Vol.20, No.8, August 2009

(7) D: I'>2%is a total function, and for each pel, D(p) is the collection of attributes that can be affected via

the port p;

(8) BP is the description of the external behaviors of the component, which is formally defined using PA.

Definition 2 (component specification). A component specification is a pair (6,4), in which @is a component
signature (Cid,%,A, I fa.fp,D,BP) and A, the body of the specification, is a quadruple (/,F,B,®), where

(1) I is a set of 2-propositions constraining the initial values of the attributes;

(2) F assigns to every port pe [a non-deterministic command, which relates all attributes in D(p) to the actions

of G(p). Here G(p) represents the set of actions of a port p;

Component Shop
Attributes
Private Cid: String;
Private OrderedItem: ItemType;
Private ChkAvail: Boolean;
Private PayInfo: Boolean;
Private ShipInfo: ItemType;

Ports
In PT1{
Boolean Sellltem(item: ItemType);
Boolean Recede(item: ItemType);
}
In/Out PT2{
Boolean Shipltem(item: ItemType);
Boolean Withdraw(item: ItemType);
¥
Out PT3{
Void SdLetter(letter: LetterType);
}
In/Out PT4{
Boolean ChkStore(item: ItemType);
Boolean RcoStore(item: ItemType);
}
In/Out PT5{
Boolean ProcPay(fee: MoneyType);
Boolean Compensate(fee: MoneyType);
¥

Axioms

Sellltem(item)=OrderedItem=item;
ChkAvail=ChkStore(item);

Withdraw(item)=ShipInfo=item;
PayInfo=ProcPay(fee);
Shipltem(item)=ProcPay(fee)=0OK;
SdLetter(letter)=Sellltem(item)=FAIL;
ProcPay(fee)=FAIL=RcoStore(item);
((ChkStore(item)=FAIL)A(ProcPay(fee)=OK))=FALSE;

Behavior

BPgj0p A BuyRequest.ChkStore.(ChkOK RequirePay.(PayFeeOK.

Shipltem.BPs,,+PayFeeFail.RcoStore.SendLetter.
BPspop)tChkFail SendLetter BPg;,,)+RecedeRequest.
Withdraw.Compensate.RcoStore. BPgpp;

Fig.2 Specification of the component Shop

2.2 Component specification morphism

(3) B assigns to every port pe/ a X-proposition
as its guard, which represents the conditions and
constraints that should be satisfied for achieving the
objectives of the component;

(4) @ is a finite set of f-formulae (the axioms of
the description), which represents the functional and
non-functional objectives of the component.

The component specification for the Shop in
Fig.1, denoted as CPyg,,, is shown in Fig.2. In the
specification CPgp=(Osnops Ashop)s Ashop=IsnopsF'shops
Bgpops Psiop) 1s shown by the Axioms part. Herein, the
axiom “Shipltem=>ProcPay(fee)=OK” indicates that
the goods can be transported only after the customer
has paid successfully. The component signature &,,=
(Cidsnops ZshopsAsnopsL Shop S Ashops /D shopsDshopsBPshop)s
where X, is the data signature;Ag,, ={Ordereditem,
ChkAvail Paylnfo,Shipinfo}; sy, = {PT1, PT2, PT3,
PT4, PTS}; fag,, describes the information of the
types, etc. type(Orderedltem)=

type(ChkAvail)=Boolean, type(Paylnfo)=
Boolean, type(ShipInfo)=ItemType; fpsi,, describes

attribute Herein,

ItemType,

the information of port types, the types of received
messages, etc. Herein, #ype(PT1)=In, MessageType
(PT1) = ItemType, type(PT2)=In/Out, MessageType
(PT2)=ItemType. The description of Dg,, contains:
Dgop(PT1)={Orderedltem}, Dg,,(PT2)= {Shipinfo},
Dgop(PT3)={ }, Dspop(PT4)={ChkAvail}, Dg,,(PT5)
={PayInfo}. BPyg,,, is the behavioral description, in
which BuyRequest, RecedeRequest, ChkStore, ... are

the actions of the component.

The relationships between component specifications are represented by morphisms of category theory.

Definition 3 (component signature morphism). Given two component signatures 6,=(Cid;,21,41,11.fa1,/p1,
D\,BP;) and 6,=(Cid,,25,4,,13.fa,,fp2,D2,BP,), a morphism from 6, to 6, denoted by o: 6,— 6, consists of

© ‘hERRER

AT

http:/ www, jos. org. cn

ekt SRR EM A T SR 1 0495 UG R AER 2117

(1) An algebraic signature mapping os: 21— 25;

(2) An attribute mapping o,,: 4,—>4,, such that,

(2.1) For some attributes f: sy,...,5,—>s in 4}, there exist attribute symbols o (f): os(s1),..., os(s,) > 0s(s)
in Ay;
(2.2) JaeA,, fa,(a)=pfa,(o,(a)), where =p means the consistency relations between property descriptions;

(3) A port mapping o,.: /1—>15, such that,

(3.1) for some ports p: sy,...,s, in 17, there exist port symbols o,.(p): os(s1), ..., os(s,) in 3;
(3.2) Ipe i, fo1(P)=0fp>(up));

@) Fpe i, oulDi(P)=Ds(0u(p));

(5) A behavioral description mapping opp: BP,—BP;.

Conditions (1)~(3) show that the component signature morphism consists of a port mapping and an attribute
mapping, and the consistency between their property descriptions should be preserved. The fourth condition
guarantees that the attributes affected by a certain port must be preserved through the morphism. The last condition
shows the mapping relations between the behavioral descriptions of the two components.

Definition 4 (component specification morphism). Given two component specifications CP,=(6;,4;) and
CPy=(6h,4y), where ,=(Cid,,21,4,,11.fa1,/p1,D1,BP), 1=(1,F,B1, D), O=(Cidy,25,45,13,fa2fp2,D2,BPy), 4=, F?,
By, ®,), a morphism from CP; to CP,, denoted by w: CP,—CP,, is a signature morphism o: 6,— 6, such that

(1) 3ge D1, q)e Dy;

(2) 3p1eli, a1eDi(p1), Fa(o(py), ola)= a(Fi(p1.ar));

(3) dqely, aq)ely

(4) 3p1el’, By(o(p)2a(Bi(p1)).

The first condition given above guarantees the functional and non-functional objectives should be preserved.
The second condition means that the effects of the relevant instructions can only be preserved or made more
deterministic, and the third condition indicates that some initialization conditions are preserved. The last condition

allows relevant guards to be strengthened but not to be weakened.
2.3 Hierarchical composition of component model

A composite component is constructed from interconnecting instances of more primitive components, which
defines a configuration. Category theory supports this kind of hierarchical design, in which the colimit can be used
for defining composition operations between components. In this way, a composite component is described as a
categorical diagram involving component specifications and specification morphisms. The objects are components
and the arrows (morphisms) indicate how the components are interconnected. The morphism types imply the
different semantics of component relations. Interaction morphism determines how a component’s service is
combined with the services provided by other components in the system. Composition morphism depicts a kind of
structure-preserving mappings, which is used to establish the relationship that must exist between two component
descriptions so that one of them may be considered as a sub-component of the other.

The behavioral semantics of a composite component can be computed based on its configuration and the
behaviors of its subcomponents, in which the parallel composition operator “_j| _” of PAI'" can be used. For
example, given two connected components 0=(Cid;, 2, 4;,1.fa.fp;,D;,BP;) and §=Cid;, 2, A;, I .fa;fp;,D;,BP;), we can
use BP, H”(ghgj) BP, to represent the composite behavior iff the collection of interaction ports between the two
components are expressed by 2(8,6). A group of interacting components {8,,6,...,6,} (6=Cid;,2;,A;, [} .fa;fpi,D;,

BP;)) can be assembled into an architecture, and the behavioral semantics of the whole architecture can be

© R

BRAKFEIFFEF httpi/ www, jos. org. en

2118 Journal of Sofiware ¥ %3k Vol.20, No.8, August 2009

formalized as BR ||,,(9l,gz) BP, H;z(€1,93)un(62,63) BE ... Hn(gl,g,,)u_.un(a,,, o, BE, -

Definition 5 (colimit of component signatures). Given two component signatures 6,=(Cid,,2|,4,,1.fa.fp1,
D\,BP,) and =(Cid,,25,45,13.fas.fp2,D,,BP,), the colimit of &, and 6, is given by the signature ¢=6,|6,=(Cid,2 A,
[fa.fp,D,BP) and two composition morphisms oy: 8,— 6 and o3: 6,— 6, where

1) (2 Oy, .05,) is the amalgamated sum of 2} and %, in which Oyt 21—>2and Oy, : 2,2

(2)4,0,,,0,,) is the amalgamated sum of 4; and 4, in which o, :41>4 and o, : 4,—>4;

3o,
(4) Va;ed;, i=1,2, fa(o, (a))~fala;);

(5) Vpiel;, i=1.2, fp(o, (0))=IPip:);
(6) Vpiel}, i=1,2, D(oip))=c{Di(p));
(7) BP=BP||, 4, BP, /{elee n(6,,6,)}, where * /_” is the hiding operator of PA"".

0.,) is the amalgamated sum of /5 and /5, in which o, : [1—>/"and o, : [,>1]

Definition 6 (colimit of component specifications). Given two component specifications CP;=(6,,4,) and
CPy=(6y,4y), in which 6,=(Cid,,2,4,,11.fa,fp1,D1,BP1), 4;=(11,F,B1, @), h=(Cidy, 2,42,13.fa2,[p2,D2,BPy), 4;=(L5,
F,,B,,®,), the colimit of CP; and CP, is given by the specifications CP=CP,||CP,=(6,4) and two composition
morphisms @: CPy—CP and @,: CP,—CP, where

(1) 6=6,||6, 01: 6,—> 0 and oy: 6,— 0 constitute the colimit of &) and 6;;

(2) 4=(L.F,B,®) is computed as follows:

2.1) Fan(I)Van(h);
(2.2) Vpiel;, a;ieDp), i=1,2, F(o(p), ola))=a(Fi(pi,a));
(2.3) Vpiel;, i=1,2, B(oip))=a(Bip));
(2.4) =0,V D,.
2.4 Architecture model

'] adds some representational and inferential power to the category theory, but

Typed category proposed by Lu
does not break the basic framework of category theory. In this paper, the typed category is extended further by
adding types to both the objects and the morphisms, and each type can be defined with a series of features. Thereby,
a bijective mapping from the concepts of software architecture to the ones of the typed category can be defined as
follows: component instance to object, component relation to morphism, component specification to object type,
relation between component specifications to morphism type, component properties to features of object types,
properties of component relations to features of morphism types. In this way, a software architecture model can be
expressed as a typed category.

Definition 7 (architecture model). An architecture model is a 5-tuple AM=(CO,CR,CT,RT,RuleS), where CO
is a collection of component instances as objects; CR is a collection of component-relationship instances as object
morphisms defined over CO; CT is a collection of component specifications; R7 is a collection of specification
morphisms as relation-types defined over CT; RuleS is the set of rules for relation-type composition. In addition to
the basic conditions of the definition of category!™, the following conditions also have to be satisfied:

(1) CO={oj1<i<n, sort(o;)e CT}, where sort represents a function which returns the type of an object;

(2) CR={r]0<j<m, 3a,beCO, r=(a,b.t), t=sort(r;)eRT};

(3) RuleS: RTxRT—RT, and for all (z,s)edom(RuleS), the type w=txs is called the composed type of 7 and s;

and for all 7;,r;,€ CR, r=(a,b,t), r=(b,c,s), there exists a composed morphism r=(a,c,w)=r,r;€ CR,

(4) For each aeCO, there exists an identity morphism r,=(a,a,u), u=sort(r,)eRT; and for all teRT,

uxt=txu=t hold;

© R

BRAKFEIFFEF httpi/ www, jos. org. en

FEah SRR EM A T SR S 3 0495 UG R AER 2119

(5) Forall r=(a,b,t), r=(b,c,s), ri=(c,d,q), rio(rper)=(a,d,(txs)xq)=(a,d,tx(sxq))=(r°r;)°r;;

(6) For all r=(a,b,t)eCR, rer=ryr=r;, where r,=(a,a,u), ry=(b,b,u).

In our notation of categorical diagram, an architecture model is a typed category composed of component
specifications and their morphisms. The specification of the whole system configurations is given by the colimit of
the underlying diagrams. The semantics of the configuration diagram should be seen as an abstraction of the

cooperative execution that is obtained by coordinating the local executions according to the interconnections.

3 Architecture Model Mapping and Semantic Property Preservation

In this paper, model mapping especially represents the mapping relations from the component specifications at
a higher abstract level to the specifications at a lower one, which also can be formally described by morphisms of
category theory (called mapping morphisms). Category theory also provides us with the means to establish the
relationships between architectural models at different abstract levels: functors.

Definition 8 (architecture mapping functor). An architecture mapping functor from the architecture model
AM=(CO,CR,,CT\,RT,RuleS,) to AM,=(CO,,CR,,CT»,RT,,RuleS,), denoted by Fu: AM,—>AM,, is a function that
satisfies the following:

(1) For every component object cse COy, Fu(cs)e COy;

(2) For every component specification cpe CTy, Fu(cp)eCTy;

(3) Fu is a homomorphism from RT; to RT, with the following properties:

(3.1) Fu associates each type teRT| with a type Fu(t)eRT5;
(3.2) For each unit type of identity morphisms ueRT, u=Fu(u)eRT>;
(3.3) For all t,seRT), always Fu(f),Fu(s)eRT,, and Fu(txs)=Fu(t)xFu(s);
(4) Fu is a homomorphism from CR, to CR, with the following properties:
(4.1) For all ¢s,cs"eCOy, (cs,cs',t)e CRy implies that (Fu(cs),Fu(cs'),Fu(f))e CRy;
(4.2) For all r,=(a,a,u)e CR,, u=sort(r,)eRT\, always Fu(r,)=(Fu(a),Fu(a),Fu(u))=(Fu(a),Fu(a),u)€ CR5;
(4.3) Fu(fog)=Fu(f)°Fu(g), whenever gfeCR, and f°g is defined.

Model-driven development can be regarded as a multi-level architecture space composed of architecture
models at different levels of abstraction, and the development process can be considered as a series of
architecture-centric model transformations that preserve the design decisions and semantic properties of source
models.

The formal description of architecture-centric model mappings can be used to judge whether a transformation
satisfies some property preservation constraints or not. In typed category based architecture model, the structural
semantics is represented within categorical diagrams which depicts the architecture configuration and specifies the
components and their relations. In order to analyze the impact of a model transformation on the organizational
structure of the system, we can first analyze the impact on dependency relations of components according to their
interconnections. Let COg be the set of components defined in the source architecture model AMs, and
CRg={{cmsCn)|cm-c,e COs, m#n} be the set of component relations, and Gs=(Vs,Es) be the corresponding categorical
diagrams where Vg>COs, Eg<>CRs. Similarly, the categorical diagrams for the target architecture model
AM=(CO7,CRy) is represented as G;=(Vr,Er), where V<>COr, Er<>CRy. The following is the algorithm to judge
whether the dependency relations are consistent or not.

Algorithm 1. To judge whether the dependency relations of components are consistent between before and
after model transformation.

Inputs: two categorical diagrams Gs=(Vs,Es) and Gr=(Vr,Er), which respectively represent the source

© hEH

BRAKFEIFFEF httpi/ www, jos. org. en

2120 Journal of Sofiware ¥ %3k Vol.20, No.8, August 2009

architecture model and the target model, and M indicates the mapping relations;
Outputs: T (means consistent), ' (means inconsistent);
Variables: DC (a Boolean variable);
1. DC:=F;
If M(Vs)@Vr and M(Vs)#Vr, then the mapping is inconsistent; goto step 6;
Calculating the transitive closure of graph G, denoted as Closureg;

Calculating the transitive closure of graph Gy, denoted as Closurer;

A

if M(Closures)cClosurer, then the mapping is consistent of component dependency and let DC:=T;
otherwise the mapping is inconsistent;

6. return DC.

The time complexity of Algorithm 1 is the same as that of calculating transitive closure, which is O(n°).

Borrowing the concept of weak equivalence of PA!'” we can make a judgment on behavioral semantic
consistency of model transformation according to the behavioral traces described in component specifications at
different levels of abstraction. For example, the external behaviors of the two corresponding component models
(respectively denoted as AMg and AM7y) at different levels are respectively formalized by two processes BP; and BP;,
then the mapping M: AMs—>AM7 is called preserving behavioral semantics if and only if BP; is weakly equivalent to

BP;. It will be illustrated further by a practical case in the next section.
4 A Case Study

The supply chain management system shown in Fig.1 is still used in this section to illustrate the application of
the theory and approach proposed in this paper. We assume that, in the target architecture after model
transformation, the combination of three subcomponents (respectively named ShopAgency, StoreAgency and
BankAgency) achieves the functions of the Shop in the source model. The ShopAgency is responsible for interacting
with customers, and the StoreAgency is used for accessing to the stock data service and interacting with the

component Transport, and the BankAgency is in charge of processing transactions with the banking services.

Transport
Q

Bank Source model T -
Target model

O T-Bank

Fig.3 Mapping relations between the source model and the target

The categorical diagram of the source model is shown as the left part of Fig.3, where the morphisms ¢;~c; are

© ‘hERRER

AAEFFTE http/ www, jos. org. en

FEah SRR EM A T SR S 3 0495 UG R AER 2121

composition morphisms, and fi~fs are interaction morphisms. The corresponding target architecture model
represented within a categorical diagram is shown as the right part of Fig.3. The mapping relations from the source
to the target are drawn with dashed arrows, which satisfy the commutative law'® of the category diagram, such as
t—frems=m °f}, t—cqome=msecy, t—fsems=my°fs, and so on. These properties show that the transformation following these
mappings preserves consistency of the dependency relations among the components. Due to the limited space, the
component specifications for the ShopAgency, the StoreAgency and the BankAgency are all omitted in this paper, and
only their colimit specification computed according to Definition 5 and Definition 6, denoted by CPr.g,,, is shown

in Fig.4, where some inner port descriptions are left out.

Component 7-Shop
Attributes

Private Cid: String;
Private OrderedItem: ItemType;
Private Recedeltem: ItemType;
Private PayInfo: Boolean;
Private ReStoreltem: ItemType;
Private ChkAvail: Boolean;

Ports
In PT1{
Boolean Sellltem(item: ItemType);
Boolean Recede(item: ItemType);

}
Out PT2{
Void SdLetter(letter: LetterType);
}
Out PT6{
Void SdLetter(letter: LetterType);

¥

In/Out PT7{
Boolean Shipltem(item: ItemType);
Boolean Withdraw(item: ItemType);

}

In/Out PT8{
Boolean ChkStore(item: ItemType);
Boolean RcoStore(item: ItemType);

}

In/Out PT12{
Boolean ProcPay(payinfo: PayInfoType);
Boolean Compensate(payinfo:PayInfoType);
Boolean InfoBack(payinfo: PayInfoType);

}

Axioms
Sellltem(item)=Orderedltem=item;
Recede(item)=Recedeltem=item;
RcoStReq(item)=ReStoreltem=item;
PayInfo=InfoBack(payinfo);
ChkAvail=ChkStore(item);
InfmShip(item)=RecPayInfo(payinfo)=OK;
SdLetter(letter)=RecPayInfo(payinfo)=FAIL;
RcoStReq(item,0)=>RecPaylInfo(payinfo)=FAIL;
RcoStReq(item,1)=RecPayInfo(payinfo)=0OK;
SdLetter(letter)=(ChkStReq(item)=FAIL)v(RecPayInfo(payinfo)=FAIL);
PayFeeReq(payinfo)=ChkStReq(item)=0K;
ProcPay(fee)=FAIL=RcoStore(item);
(ChkStore(item)=FAIL)A(ProcPay(fee)=OK)=FALSE;
ChkStore(item)=FAIL=Order(order);

Behavior
BP 4G A BuyRequest.TrnChkStore.(RecChkOK.TrnReqPay.(RecPayFeeOK .Shipltem.BP 46+

= PayFailRec.RcoStore.SendLetter2.BP6)+RecChkFail.SendLetter1.BP 46)+
RecedeRequest.Withdraw.TrnCompensate.RcoStore.BP 46;

Fig.4 Colimit specification of the ShopAgency, the StoreAgency and the BankAgency

ST https/ www, jos. org. cn

2122 Journal of Sofiware ¥ %3k Vol.20, No.8, August 2009

Next, we analyze the behavioral semantic descriptions BPg,, in Fig.2 and BP ¢ in Fig.4. Obviously, BPg,, is
weakly equivalent to BP,s. According to the description in Section 3, we know that the transformation M:

Mp0p—>M7.530p consistently preserves behavioral semantics.
5 Conclusion and Future Work

In this paper, category theory and process algebra are combined together to provide a unified semantic
description framework for architecture models and their mapping relations. Architecture is inherently about putting
parts together to make larger systems. The colimit operation of category theory and the parallel composition
operator of process algebra work particularly well in this regard. In this way, one can reason about all parts of a
system separately, which preserves the properties established about the parts. The semantic description framework
commendably captures the essence, process and requirements of MDD, which can be used as a new theoretical
guidance for the cognition, design and semantic calculation of model transformations and model-driven
development. As far as future work is concerned, there are several directions that we would like to explore: (1) to
study more about the semantic properties which should be preserved in model transformations; (2) to make a
summary of the generic proving processes and propose algorithms to strictly prove whether a transformation
satisfies a property preservation constraint or not, and thus support the design and verification of transformation

rules.

References:

[1] Hailpern B, Tarr P. Model-Driven development: The good, the bad, and the ugly. IBM Systems Journal, 2006,45(3):451-461.

[2] Varro D, Pataricza A. Automated formal verification of model transformations. In: Proc. of the UML 2003 Workshop on Critical
Systems Development in UML. San Francisco, 2003. 63-78. http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2003/
csduml2003_vp.pdf

[3] Thomas D. MDA: Revenge of the modelers or UML utopia? IEEE Software, 2004,21(3):15-17.

[4] Liu H, Ma ZY, Shao WZ. Description and proof of property preservation of model transformations. Journal of Software, 2007,
18(10):2369-2379 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/18/2369.htm

[5] Bergstein PL. Object-Preserving class transformations. In: Proc. of the ACM SIGPLAN Conf. on Object-oriented Programming,
Systems, Languages, and Applications. New York: ACM Press, 1991. 299-313.

[6] Van Der Straeten R, Jonckers V, Mens T. Supporting model refactorings through behaviour inheritance consistencies. In: Proc. of
the Unified Modeling Language (UML 2004). LNCS 3273, Heidelberg: Springer-Verlag, 2004. 305-319.

[71 Mens T, Van Eetvelde N, Demeyer S, Janssens D. Formalizing refactorings with graph transformations. Journal of Software
Maintenance and Evolution: Research and Practice, 2005,17(4):247-276.

[8] Pierce Benjamin C. Basic Category Theory for Computer Scientists. Cambridge, Massachusetts: MIT Press, 1991.

[9] Lopes A, Wermelinger M, Fiadeiro JL. Higher-Order architectural connectors. ACM Trans. on Software Engineering and
Methodology, 2003,12(1):64—-104.

[10] Bernardo M, Ciancarini P, Donatiello L. Architecting families of software systems with process algebras. ACM Trans. on Software
Engineering and Methodology, 2002,11(4):386—426.
[11] LuRQ. Towards a mathematical theory of knowledge. Journal of Computer Science and Technology, 2005,20(6):751-757.

Bt Fp 32528 S0k
[4] SRR JBR 5 B, TS 40 i SR e A v P AR e R R (R A 3 5 38 0IE . 3 1 22 4R ,2007,18(10):2369-2379. http://www.jos.org.cn/1000-9825/
18/2369.htm

EEERIFTET O httpy/ www, jos. org. en

B FRR M A TSGR A 0935 AR AER

HOU Jin-Kui was born in 1976. He is a
Ph.D. candidate at the Computing Science
from Shandong University. His main
research areas are model-driven
development, formal method and software
architecture.

WANG Hai-Yang was born in 1965. He is
a professor and doctoral supervisor at the
Shandong University and a CCF senior
member. His research areas are software
and data engineering, CSCW and business
process management.

MA Jun was born in 1956. He is a
professor and doctoral supervisor at the
Shandong University and a CCF senior
member. His research areas are analysis
and design of algorithms, information
retrieval and parallel computing.

2123

WAN Jian-Cheng was born in 1949. He is
a professor and doctoral supervisor at the
Shandong University and a CCF senior
member. His research areas are software
architecture, software engineering and
natural language processing.

YANG Xiao was born in 1981. She is a
Ph.D. candidate at the Computing Science
from Shandong University. Her research
areas are natural language processing,
artificial intelligence and software
engineering.

© PERRERAAAFIIFUR htpy/ www, jos. org. en

	1 Introduction
	2 Formal Semantics of Architecture Models
	2.1 Component specification
	2.2 Component specification morphism
	2.3 Hierarchical composition of component model
	2.4 Architecture model

	3 Architecture Model Mapping and Semantic Property Preservation
	4 A Case Study
	5 Conclusion and Future Work

