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Abstract:  This paper considers the space GC* Hermite interpolation by cubic B-spline curve which is based on de
Boor’s idea for constructing the planar GC* Hermite interpolation. In addition to position and tangent direction, the
curvature vector is interpolated at each point. It is proved that under appropriate assumptions the interpolant exists
locally with two degrees of freedom and the 4th order accuracy.
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1 Introduction

Curve interpolation is one of fundamental issues in CAGD. It is well known that the classical Hermite
interpolation can obtain a parametric curve with a higher parametric smoothness. The construction of twice
continuously differentiable cubic spline interpolants usually involves the solution of a global system of equations!"’.
Since the geometric continuity is generally weaker than the parametric continuity, it is expected to drop down the
degree of the interpolant. Thus the geometric Hermite interpolation (GHI) was introduced and studied®™®. The GHI

is the Hermite interpolation based on geometric continuity. In particular, the aim of the quadratic geometric(GC?)
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Hermite interpolation is to find a curve which interpolates positions, tangent directors, and curvatures at the
endpoints. The quintic polynomials are needed for C*-Hermite interpolation. However, the following researches
show that the degree of GC*-Hermite interpolants can be dropped down, and the approximation order will be good.
de Boor et al.”! showed that if the curvature at one endpoint is not vanished, then the interpolant of a planar curve

h*) considered the approximation of space curve by

exists locally and the approximation order is 6. Hollig and Koc
the cubic Bézier curve, and showed that if the torsion at one endpoint is not vanished, then the solution exists
locally, and the approximation order is 5. Furthermore, they also considered™ the planar GC*> Hermite interpolation
by quadratic B-splines. Xu and Shit also considered this question by space quartic Bézier curve, and showed that if
the torsion at one endpoint is not vanished, then there exists # >0 such that for0< s < H , the space GHI problem
has solutions with one degree of freedom and approximation order 6. Recent implementations show that the GHI
performs excellent in various applications. Unfortunately, most of the researches are mainly for planar curves. Hollig
and Koch™! didn’t consider curvature vector, so their interpolation is not the GC* Hermite interpolation. In
engineering and mechanics, a better interpolant has lots of better properties, such as smaller energy, smaller arc
length, etc. For space GC* Hermite interpolation, cubic polynomials are not enough because the curvatures become
vectors in R®. This paper presents a new scheme for space GC* Hermite interpolation by cubic B-spline curve. The
advantages of the new scheme over others are not only dropping down the degree of the interpolant but also
possessing two degrees of freedom to control the shape-forming of the interpolant to satisfy various requirements.
Our main result is: Ifr =r(s),s €[0,/]is a smooth curve (C° is enough) with nonvanishing torsion at one

endpoint, then there exists H > 0 such that the space GHI problem is solvable for 0 < & < H . Moreover, the solution
possesses two degrees of freedom, and approximation order is 4.
The paper is organized as follows. The second section discusses the construction of the interpolant. The third

section proves the local existence of the interpolant, and the approximation order is considered in section 4. Section

5 gives some examples. Finally, Section 6 presents the conclusions and future work.

2 Construction of the Interpolant

The space GHI conditions™ can be represented as follows:

D) (DX "

,=b(0),d; = INEL
r; @) |b (l)l |b'(i)|3

wherer;,d;, k; are the given endpoint positions(without loss of generality, we assume 1, =1(0) =0,r, =r(h),h € (0,7]),
tangent directions and normal curvature vectors on the curve r =r(s), s €[0,/]. We represent b(¢) as a cubic B-spline

curve

b(t) = ib;N,-,s ®),1€[0,1], @

i=0
where {b,. } are the control points, and {N ,’3(t)}are the B-spline basis functions defined on the knot vector

U ={0,0,0,0,z,LLL1},z € (0,1).

The first two conditions in (1) imply

b, =b(0)=0,b, =b()=r,, 3)
Ab, =1, d,,Ab, =1d,,[,,], > 0. “4)

Hence from the third condition in (1), we have
b, =u0d0+%k0xd0,u0 ER, %)
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bz=b4—uld1+2(ll_z)klxdl,uleR. (6)
Thus we obtain the solvable condition of the space GHI problem
31,
(o +1)dy +(u, +1,)d, =b, —2—°Zk0 xd, +

2

3l
2(1-z2)
In fact, if ug, u;, lo, and [, satisfy (7) and /, > 0,/, > 0, then (3), (4), and (5) or (6) give the solutions of the GHI

problem. We discuss the problem in terms of the value of k, xk;,.

k, xd,. @)

2.1 k,xk, =0

2.1.1 b,ek, #0
Let (7) make inner products respectively withk,,k,, we getb, ek, =0. Then the space GHI problem is

unsolvable. However, the Corollary in section 3 indicates that we can subdivide the problem and find a piecewise
cubic B-spline curve satisfying the GC*-condition for any smooth curve r =r(s),s €[0,/] with nonvanishing torsion

anywhere.
2.1.2 b,ek,; =0
This case can be dealt with by planar cubic Bézier curves or quadratic B-spline curves™>®,
22 Kk,xk, #0
221 dyek,=d,¢k,=0
Let (7) make inner products respectively withk,,k,.k, xk, , we get

2z b,ek
e e i 8
" TS kdy)’ ®
2(1-2)b, ok
12:_ 4 0’ 9
T Sk, ®
o (KoK, dy )+ 1, (K ok od, ) = (Ko ok )b, —1dy —1d, ). (10)

This proves the following result.

Theorem 1. Suppose thatk,xk, #0 andd, ek, =d, ek, =0, then the space GHI problem is solvable if and

only if
(b4 .kl)(k09kl7d0)< 0>(b4 'ko)(koakladl)< 0.

In this case, (/,,/,) is determined by (8),(9) and (u,,u,) varies in the straight line given by (10). Furthermore,
(uy,u,) ’s variations in the line (10) and z ’s variations in (0,1) can be viewed as two shape parameters to control the
shape-forming of the B-spline interpolation curve.

222 dyek,#0ord ek, #0
Let L,,L, and 7, 7, denote the tangents and the osculating planes at the endpoints respectively. They can be
represented as follows:
7, :xek, =0,
m :(x=b,)ek, =0,
Ly:x=md,,meR,
L :x-b,=md,,meR.

In this case, we havek,xk, #0, i.e. 7, N7, # ¢ . Denote by L the intersection line of z;and 7, . It is clear that
the direction of Lisk, xk, .

First, we consider the case ofd, ek, #0, i.e. L, is unparallel with L. Denote by q the intersection point of L,
and L . Note thatq e L,,q € 7, , we get

q=c,dy.(q—b,)ek, =0.
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This leads to

ok
¢, = ';: e
Therefore, for checking Eqgs.(5), (6), they are sufficient to show that
b, =c,d, +ck,xk ,ceR. (11)
From (1), (3), and (4), we have
Iy :Z—;C(k] od,), (12)

2_ 2(1_2)[(b4 _COdO’dl’kl)_c(kO 'd11k1|2J

13
3k, ()

l

Thus we get:
Theorem 2. Ifk,xk, #0andd, ek, # 0, then the solution to the space GHI problem is given by (11)—(13),

where
ceC:= {c cR:c(k, od,)> 0,(b, —c,dy,d, .k, )-clk, od, Jk | > 0}.

Moreover, ¢’s variations in C and z’s variations in (0,1) can be viewed as two shape parameters to control the

shape-forming of the B-spline interpolation curve.
Similarly we can discuss the case ofd, ek, #0 .

3 Existence of the Interpolant

Suppose thatr =r(s) is a smooth curve, s €[0,/] as an arc length parameter. The conditions in (1) imply
b, =r(0)=0, d, =r'(0), k, =k(0) (14)
b, =r(h), d, =r'(h), k, =k(h), he(0,], (15)

where k(s) is the curvature vector of r(s) . The interpolant b(¢) can be regarded as an approximation of the original
curver =r(s), s €[0,4], if & is sufficiently small. The aim of this section is to prove the local existence of the space

GHI problem.
We expand the curver =r(s)ats =0

r(s) —rl+ R Lo +0(sY, (16)
2 3!
where r?” =r(0),i =1,2,3 . This follows
k(s) =1'(s)xI"(s) = 1’ x 1" + 1 x s +%(r” <" 41 xr® 7+ 0(s%) . 17)
From (14)—(17), we find

d, ok, ==(r',r",r" > + O(h),

(e e h? + O(h),

b, ok, =—(r',r",r" > + O(h*),

="k +O(h?).

OW'
X
=~
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If (r,r",r") £ 0, we getk, xk, #0,d, ok, # 0 and |k0| # 0 . Therefore, this case can be dealt with by Theorem 2.
Furthermore, we obtain
b,ek, 1

¢, =——L=—h+0O(h%),
e 3O

(b, - ook, )= 17 + O

(1) If(r',r",r"’)> 0 and 7 is sufficiently small, thenk, ed, >0,k, ed; >0, we have

ceC:= ceR:0<c<(b4L°’d“2k‘) * 4, (18)
(ko’dllk1|

which shows that the space GHI problem has solutions with two degrees of freedom.
) 1f (r',r",r"') <0and / is sufficiently small, thenk, ed, <0,k, ed, <0, so

ceC= ceR:0>c>(b4L°’dl’2k1) 2. (19)
(kO.dIXkl|

It implies the similar conclusion. These imply the following result:
Theorem 3. Suppose that r=r(s)eC’[0,/]is a curve with nonvanishing torsion at s=0, then there

exists H > 0 such that for 0 < & < H , the space GHI problem has solutions with two degrees of freedom.

Denote by z(s) the torsion of the curver =r(s),s €[0,/]. If 7(s) # 0 for s €[0,/], there exists H(s) > 0 such that
the space GHI problem has solution for the curver(s) on[s,s + H(s)]N[0,/]or [s — H(s),s]N[0,/]. Note that [0,/] is a
bounded and closed interval, from the Theorem of Finite Covering, we can select finite intervals
from {s —H(s),s+H(s):se [0,1]}to cover [0,/]. Thus the problem in section 2.1.1 can be dealt with by the following
Corollary.

Corollary 1. Suppose thatr =r(s) € C’[0,/]is a curve with nonvanishing torsion anywhere, then there exists a
piecewise cubic B-spline curve satisfying the GC* condition.

4 Approximation Order

Suppose thatr =r(s) € C°[0,/]is a curve with nonvanishing torsion at s=0 (s is the arc length parameter), and

b =b(¢),t €[0,1]is the GHI interpolant. Then these two curves can be represented by
b() = [x(1), y(0),2(0] () = [X (), Y (). Z(s)]., (20)

respectively. Since the curve r(s) has nonzero torsion ats =0, sor'(0) = 0,b’(0) # 0 . Without loss of generality, we
assume that the first coordinate of r'(0) is nonzero, i.e., X'(0)=0 . Hence X(s),s €[0,A] is invertible if 4 is
sufficiently small. Let

b, (1) =b(0) =[x (1), (). 5, (0} €[0,2],

b, (1) =b(0) =[x, (1), 3,(1),2, ()] 1 e[,
It is clear that b, (¢),b,(¢) are cubic polynomials. Recall that!”?

b'(¢) = ib}N}vz(t),t €[0,1], @21

i=0
where

b, = iAbo,b} =3Ab,,b} =3Ab,,b} = liAb3,
z —Z
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and Nl.lw2 (1),i =0,1,2,3 are defined on the knot vector U’ = {0,0,0,z,1,1,1} .
The conditions (18),(19) imply that c is in the neighborhood of the original point. Letc — 0, we find

Vi-z
3

Ab, =1,r'(0),

I — h+O(h?),

Ab, —>lr'(0)h +0(h?),

2\/12,

Ab, - r'(0)h+O0(h?),

Ab, -2 13_2 r'(0)h+O(h?).

Therefore, if ¢,/ are sufficiently small, the signatures of the first coordinate of Ab, are the same as X'(0), i.e.,

there exist functions x;' and X ' satisfying
N5 () =v, XX ) =v.

This provides
B,(W)=[v.3 0% (.7, 0% (M],ve[On], (22)
RM =[v,Y o X'(v),Zo X' W], ve[0,v], (23)

where o denotes the composition of functions. By using the chain rule,

Bl (v) = ——[x(0), (). z ()],

1( )
Bi(v) = ( Tor X (OY(0) = (@010, X (1) z(1) = §(O)z ()],
X
and the corresponding formulas hold for the derivatives of R(v) . We get
B,(0) =R(0),B;(0) = R'(0),B{(0) =R"(0). (24)

Let
W)=y 00 () =Y o X7\(),
L) =z0x" (M) =Zo X (v).
The error of the first segment is bounded by
e,(h) =2 max| £, (v)],i = 1,2. (25)
From (24), we have
[0 =, ©)= £, ©)=0,i=12, (26)
and £"(0) = O(h),i =1,2 ™. This implies the desired approximation order e, () = O(h*) if the 4th derivatives of f,(v)

and f,(v) are bounded, independently of / . By using the chain rule again, we have

o) <O )
v 2 (Y2 7

d° o ;l o iy
(z o )_Z(Zl [ 1~ )(x;)”z“' (28)

According to (21) and the expansions in Section 3, we have

b} ()] = O(h),
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and the corresponding formulas hold for |b{’(t)| and b;"(t)| . From these and (27), (28), the 4th derivatives
of f,(v) and f,(v) are bounded. It can be also discussed for the case of the second segment in the same way using the
interpolation conditions at the right endpoint.

Theorem 4. Suppose that r=r(s)e C’[0,/] is a curve with nonvanishing torsion at s=0, then there

exists H > 0such that forO <% < H , the space GHI problem has solutions with two degrees of freedom and the
interpolant has the 4th order accuracy.

5 Examples

In this section we compare our method with the classical Hermite interpolation, and the two methods described

in Refs.[3,5] respectively. First we consider the helix:

r(1) = (cos(t),sin(1),0),0 €[0,h),h = —,—,—,—,—.
We compute numerically the arc length, energy E:_[ |k(s)|2ds (s is the arc length parameter), global

curvature E = “k(s)|ds , average curvature k , and the difference of curvature and torsion between the original curve

and the interpolants by the Hermite interpolation, the scheme described in Ref.[3] and our interpolation scheme. The
original curve and these interpolants are labeled by Helix, Hermite, Hollig, and CGHI respectively.

Forh=mn/2, these interpolants and the original curve are plotted in Fig.1. In fact the CGHI and Hoéllig
approximate the Helix so well that they override it when displayed on the computer screen, while the Hermite is
bad. Curvature and torsion errors for Helix are shown in Figs.2 and 3 respectively. The energy and other information
of these interpolants are listed in Table 1. We can conclude that CGHI is better than Hollig since it can approximate
the curvature and torsion. Moreover, Hermite is the worst.

The smaller % becomes, the better the Hollig and CGHI will be. However the Hermite becomes unstable and
its curvature and torsion fluctuates very much. Worst of all, as h=n/8,n/16,n/32, the arc length and whole
curvature of the Hermite interpolants become more and more bigger. In the following we only list the corresponding
data in Table 2 fors=mn/16. Compared with the Hollig, although the CGHI’s approximation order is lower than
Hollig’s, the performance of CGHI is as good as that of the Hollig because it interpolates the curvature vectors at

the endpoints, but the Hollig does not.

Fig.1 Interpolation curves for the helix with /2

Tablel h=n/2,z=04,¢c=0.364

Curves s E K k
Helix 22214 0.5555 1.110 7 0.500 0

Hermite 2.176 8 0.730 6 1.092 0 0.501 6
Hollig 22217 0.5555 1.111 0 0.500 0
CGHI 22215 0.5555 1.110 7 0.500 0
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Table2 h=mn/2,z=0.5,c=1.3385

Curves N E K k
Helix 0.2777 0.069 4 0.138 8 0.500 0
Hermite 0.682 7 20598. 6.422 2 9.406 7
Hollig 0.2777 0.069 4 0.138 8 0.5000
CGHI 0.277 17 0.069 2 0.138 8 0.500 0
0014
0.0054
e
00059 7
001 ; : Hegmnite
0015+
0

02 04,08 08

Fig.2 Curvature errors for the Helix with /2

0.051
o]
o]
01 7
EREE

23
E Hermite

o oz

04 08

T e
o8 1 0 02 04,08 08

Fig.3 Torsion errors for the Helix with t/2

The ratios of consecutive errors defined by m(h):logz(e(h)/e(h/2)) are listed in the table below for a

sequence starting with 4 =m/2 . Obviously, the convergence is of orderm =4 .

Table 3 The ratios of consecutive errors

h e m
72 0.3531x1072

/4 0.2201x1073 4.01
/8 0.1375%x107* 4.00
/16 0.8589x107° 4.00
/32 0.5374x1077 4.00

It should be pointed out that the B-spline has two free parameters z and ¢ . They will be reduced to solve some

nonlinear optimization problems. For s =n/2, the parameter ¢ varies in C decided by (18). The energy and arc

length of the B-spline dependent on ¢ with z=0.5 are shown in Fig.4.

Our method can also be used to approximate the degree reduction of the splines. In order to approximate the

Bézier of degree 5 with control points located on the cube (see Fig.5), we split it into two segments and compute the

geometric Hermite interpolants using our method and two methods described in Refs.[3,5] for each segment. These

interpolants are labeled by CGHI, Hoéllig, and Bézier respectively. The errors and the curvature errors are shown in

Figs.6 and 7. We can see that the CGHI performs better than Hollig and Bézier while used to approximate the

degree reduction in the example.

222214
® 2229

ekeerk 20 5564
0.556

Bher

0.5556 5

0.5552

]

22

3 08 1 18 2 285 3
G

Fig.4 Energy and Arc length of B-spline depend on ¢
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0s axi
xoaxig 1 IS

Fig.5 Bézier curve of degree 5

0012
0o0sd Bzier

o004 /

04 08412 18 2

Fig.7 Curvature errors of interpolant curves for a Bézier curve of degree 5

6 Conclusions and Further Work

The geometric Hermite interpolation is the high accuracy approximation of smooth curves. Compared with the
classical Hermite interpolation, the geometric Hermite interpolation has a great superiority since it is based on the
geometric continuity and so it can drop down the degree of the interpolant without losing its geometric smoothness.
Theoretical researches and examples show that the geometric Hermite interpolation has a very good approximation
performance. Although our scheme is only O(4*) rather than O(h°) and O(%®) convergence rates of the schemes
presented in Refs.[3,5], the performance of our scheme is very good compared with other two methods. Since it
possesses two shape-parameters, we can control the shape-forming of the interpolant much easier. On the other
hand, can we improve the approximation order from 4 to 5 or 6 by using two shape-parameters z,c? It is a difficult

problem worthy of further studies.
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