
 Vol.16, No.1 ©2005 Journal of Software  软 件 学 报 1000-9825/2005/16(01)0135 

一种面向移动计算的低代价透明检查点恢复协议
∗
 

李庆华+,  蒋廷耀,  张红君 

(华中科技大学 计算机科学与技术学院,湖北 武汉  430074) 

A Transparent Low-Cost Recovery Protocol for Mobile-to-Mobile Communication 

LI Qing-Hua+,  JIANG Ting-Yao,  ZHANG Hong-Jun 

(School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)  

+ Corresponding author: Phn: +86-27-87544471, Fax: +86-27-87544471, E-mail: liqh@263.net, http://www.nhpcc.hust.edu.cn 

Received 2002-12-16; Accepted 2003-11-10 

Li QH, Jiang TY, Zhang HJ. A transparent low-cost recovery protocol for mobile-to-mobile communication. 
Journal of Software, 2005,16(1):135−144. http://www.jos.org.cn/1000-9825/16/135.htm 

Abstract: Mobile computing brings new challenges and requirements for checkpointing and recovery protocol. 
Existing checkpointing-only schemes can not guarantee the independent recovery through creating global consistent 
checkpoints. Message logging schemes based on mobile-MSS-mobile communication that exchanges messages 
among mobile hosts may incur large contention on the wireless network and high latency for message transmission 
relative to the direct mobile host to mobile host (m-m) communication. This paper presents a novel recovery 
protocol for m-m communication, in which two key problems, message order and duplicate message, are effectively 
solved. A proof of the protocol correctness is also given. Finally, simulation results indicate that the performance of 
the proposed approach is better than that of the traditional approaches in terms of fail-free and recovery overhead. 
Key words: mobile computing; checkpoint; message logging; rollback recovery 

摘  要: 移动计算系统中的检查点恢复协议面临着许多与传统分布式系统所不同的问题.在目前已出现的支持移

动计算的检查点恢复机制中,基于建立全局一致的检查点的方法不能确保错误的独立恢复;基于 m-MSS-m 通信的

消息日志方法其移动站之间交换的消息需通过移动基站的转发.提出了一种基于消息日志的支持移动站之间直接

通信(m-m)的容错协议并给出了相应的算法及正确性证明.与 m-MSS-m 通信相比,m-m 通信有利于降低信道冲突;
减少消息传递延迟.仿真结果表明,所设计的协议比传统协议具有更小的无错误状态下引入负载和错误恢复时间. 
关键词: 移动计算;检查点;消息日志;回滚恢复 
中图法分类号: TP393   文献标识码: A  

                                                             

∗ Supported by the National Natural Science Foundation of China under Grant No.60273075 (国家自然科学基金); the National 

High-Tech Research and Development Plan of China under Grant No.863-306-11-01-06 (国家高技术研究发展计划(863)) 
LI Qing-Hua was born in 1940. He is a professor and doctoral supervisor at School of Computer Science and Technology, 

Huazhong University of Science and Technology. His research areas include mobile computing and grid computing. JIANG Ting-Yao 
was born in 1969. He is a Ph.D. candidate at School of Computer Science and Technology, Huazhong University of Science and 
Technology. His research area is mobile computing. ZHANG Hong-Jun was born in 1964. She is a Ph.D. candidate at School of 
Computer Science and Technology, Huazhong University of Science and Technology. His research area is multi-agent.  

 



 136 Journal of Software  软件学报  2005,16(1)    

1   Introduction 

Recent wireless-LAN and personal-computer technology have made mobile computing realizable. A mobile 
computing system is a distributed system consisting of mobile hosts(MHs) that can move from one location to 
another and mobile support hosts(MSSs). MSSs are interconnected by a wired high speed network and their 
physical locations do not change. The geographical area covered by a wireless interface is called a cell. The mobile 
network is divided into multiple wireless cells. MHs keep moving from one cell to another. An MH communicates 
with another MH in another cell only through the MSS. Mobile computing raises many new issues: The bandwidth 
of a wireless LAN is lower than that of a wired LAN. Thus, the communication overhead must be minimized. The 
mobile hosts do not have so much capacity of the battery that it can not communicate with the other hosts for a long 
time and can not store very large data into its local storage to save energy. Handoffs and frequent disconnection 
because of lacking of the battery power are at large. That an MH leaves a cell and joins another cell immediately is 
called a handoff. Application/computation processes are required to continue their computation even when handoffs 
and disconnection occur. 

Considering the fact that the MHs are vulnerable to failure, it is very necessary for a mobile computing system 
to be equipped with a checkpointing recovery facility. The state of a process is periodically saved on a stable 
storage, which is called a checkpoint. When failure occurs, the system rollbacks to restart its execution from the 
checkpoint and the messages that have been sent but not received are restored. Many checkpointing recovery 
protocols are reported[1−19]. However they are expensive and not adequate for mobile computing. The past protocols 
can be mainly divided into two categories: checkpointing-only and message logging. Checkpointing-only protocols 
have a common problem in rollback, which is that they need the exchange of extra synchronous messages. Recent 
work has shown that message logging has a decided advantage in recovery for mobile computing[1]. However 
message logging schemes are typically based on m-MSS-m communication. Exchanged messages among MHs in a 
same cell are retransmitted by the MSS, which increases the contention possibility and the latency for message 
transmission. 

This paper presents a novel recovery protocol that can support m-m communication, which exchanges the 
message directly and is more suitable for the features of low bandwidth, fragile connection, and frequent failures. 
The rest of this paper is organized as follows: the related work is provided in section 2. Section 3 presents the 
system model. Section 4 is the proposed protocol description. Simulation results are given in section 5. Finally, 
section 6 gives our conclusions. 

2   Related Work 

Blocking coordinated checkpointing and recovery protocols[2−5] and nonblocking checkpointing schemes[6,7] 

have been extensively studied. They require the processes in system to synchronize their checkpointing or recovery 
activities in order to reach a global consistent state so that the reception of messages is recorded only if the 
corresponding sending has been recorded. Fixed hosts take consistent checkpoints by using synchronous protocols 
with the help of a high speed wired network and adequate stable storages. However, any kind of synchronization or 
coordination among MHs is not suitable due to the low network bandwidth, frequent disconnection, and insufficient 
storages. 

References [8−10] discuss a synchronous checkpointing protocol for mobile hosts. The processes coordinate 
their checkpointing actions in such a way that the set of local checkpoints taken is consistent. Whenever a process 
requests to take a checkpoint, a set of processes must be checked and some of them may also need to take their 
checkpoints in order to preserve consistency. However, they are not adequate, because of the large number of 

  



 李庆华 等:一种面向移动计算的低代价透明检查点恢复协议 137 

coordination messages exchanged between the MHs and processes participating in the coordination.  
Asynchronous checkpointing[11] takes checkpoint periodically without any coordination with others. To recover 

from a failure, a process communicates with other processes to determine if their local states are causally related. 
However, this approach may suffer from the domino effect. 

Communication-pattern based checkpointing[12] allows a process to take consistent checkpoints independently. 
The MHs may have to transfer a checkpoint with every outgoing message. In the worst case, the low bandwidth 
wireless network can not afford it. Communication-induced checkpointing[13] is difficult for all MHs to achieve 
synchronous realtime clock since message transmission delay is diverse and time-variant. 

When the recovery is concerned, checkpointing only schemes may cause recursive rollbacks because of the 
livelock problem[2]. On way to guarantee the asynchronous recovery is the message logging in addition to the 
checkpointing. Message logging protocols are classified into three categories: pessimistic, optimistic, and causal. 
Causal protocols[14,15] require a large size of log space and also a large amount of dependency information to be 
carried in a message, which can be a serious drawback in the mobile environment. Pessimistic protocols[16] 
potentially block a process for each message it receives. This can slow down the throughput of the processes even 
when no process ever crashes. Optimistic protocols[17,18] , with a less message overhead than that of pessimistic, 
take the small risk of creating orphans and suffer from the transfer communication overhead. Rao compared the cost 
of recovery for different message logging approaches[19]. 

In China, some scholars have done many significant works about checkpoint and recovery[20−23]. 
Existing message logging schemes based on m-MSS-m communication are faster in recovery than that of the 

checkpointing only. However m-m communication benefits from reducing the contention on the wireless network, 
decreasing the latency for message transmission and increasing the throughput of MSSs. Thus, it is important to 
develop a new checkpointing recovery protocol for m-m mobile computing. 

3   System Model 

A mobile computing system Ω=〈υ,τ〉 consists of a setυs={mss1,mss2,…,mssn} of MSSs, a setυh={mh1, 
mh2,…,mhm} of MHs, and a setτ υ⊆ 2 of communication channels. The network is divided into multiple cells. 

Each cell is supported by an MSS. The mhi communicates directly with mhj in the same cell and yet throughυs with 
mhk in another cell. This is realized by using wireless LAN protocols such as IEEE802.11, which is inherently 
broadcast-based. Message transmitted from a MH is received by a destination MH including the MSS in a same cell. 

Distributed computation in a mobile computing environment is performed by a set of processes running 
concurrently onΩ(in the later section, the computation process run at mhi is denoted by pi). The computation is 
event-driven, and a message sending or a message receipt is called an event. Let  denote the x-th event of the 
process p

x
ie

i. Let H be the set of all the events produced by a distributed computation. This computation is modeled by 

the partially order set , where  denotes the happen before relation),(
^

→= hbHH →hb [24]: 










→∧→∃∨

=∧=∃∨

≤∧=

⇔→
y
j

hbl
k

l
k

hbx
i

y
j

x
i

y
j

hbx
i

eeeelk

mreceiveemsendem
yxji

ee

:,

)()(:  

In addition to satisfying the happen before relation, the computation is also dependent on the states of the 
process, because a recovery process may not produce the same run upon recovery even if the same set of messages 
are sent to it since they may not be redelivered in the same sequence as previous failure. Process, pi, experiences a 
sequence of state transits during its execution. Let denote the m-th message receipt event of process pm

ir i. The m-th 

state of pi, , indicates the sequence of the event generated between  and  (including r ), where m>0 m
is 1−m

ir
m

ir
m

i

  



 138 Journal of Software  软件学报  2005,16(1)    

and  is the initial event. Let p0
ir i’s state [s i ] represent the sequence of all states up to . m

ii ss ,...,, 10 m
is

In our model, a reliable message delivery is assumed, and the message transmission delay is assumed to be 
finite but arbitrary. The links abide by the FIFO communication. MHs are fragile but MSSs are reliable. Processes 
are failure stopped, and all failures result in halting a failed process immediately. The computation is assumed to 
follow the piece wise deterministic model. 

4   The Proposed Recovery Protocols 

The proposed recovery is based on the independent checkpoint, message logging and asynchronous 
rollback-recovery. We implement this approach with the help of the agent technique. A group of agent processes are 
in charge of taking checkpoint, message sending, receiving, and rollbacking, which is transparent to the 
computation. 

4.1   Data structure 

The following data structure is adopted in the proposed recovery algorithm: 
sent[] and recv[]: two integer array variables managed by each MH in the volatile storage. For process pi, 

sent[j] and recv[j] are equal to the sequence number of the computation messages sent to and received from process 
pj, respectively. 

rec_sum: an integer variable managed by each MH in the volatile storage. It records the total number of the 
messages that each MH received. 

sent_fini[]: an integer vector maintained by each MH in its stable storage. The message number that pi has ever 
sent to pj is stored in sent_fini[j]. 

rec_num: an integer value in each MH’s stable storage. It is used to record the total number of the messages 
that each MH has ever received. 

rec_ord[]: a tuple (pid,inum) vector maintained by each MH in its stable storage. We use it to keep track of a 
message’s arrival order. The pid means the process Id that sends the message, and the inum indicates the sequence 
number of the message receipt. For example, for process p1, rec_ord[5]=(2,3) indicates that the 5-th message 
received by p1 is the 3-th message sent to p1 by p2. 

4.2   Independent checkpoint and message logging 

Each mobile host periodically takes a checkpoint and the time interval between two consecutive checkpoints is 
determined by itself. The checkpoint with the related send[], recv[] and rec_sum is transmitted to a MSS, say mssp, 
to be saved into mssp’s stable storage. The message log is managed by mssp. Each message delivered to mhi by mhj 
is also received by mssp, what mssp needs to do is to log the message but not to transfer it when rollback or when 
mhi and mhj are not in a same cell. When a new checkpoint is taken, the previous message log and the checkpoint 
are discarded. 

Two special issues must be properly solved, shown in Fig.1, which never occurrs in m-MSS-m communication 
network. 

The first problem is the order of message receipt in recovery. It can be seen from Fig.1 that the order of 
messages m1 and m2 received by mhi is m1, m2, but the order reaching mssp is m2, m1. Thus when rollback happens 
after a failure occurrs in mhi, mssp can not confirm the arrival order of m1, m2 in mhi. In other words, it is impossible 
for mssp to store messages into a message log in the same order as mhi does by only receiving them from a 
broadcasted wireless LAN protocol. 

One idea to get a correct order is that mhi stores messages in a volatile storage temporarily and transmits them 
to mssp for storing into a stable storage. However mhi does not always have enough storage and this will increase 

  



 李庆华 等:一种面向移动计算的低代价透明检查点恢复协议 139 

communication overhead. Another idea introduced by Ref.[25] is to store the messages in mssp without order. When 
mhi needs to send a computation message, say m4, it attaches the message arrival order to m4. However this 
approach may not work correctly, such that a failure occurrs in mhi before it sends message m4. As a result, the order 
information may be lost. In addition, extra order information appended to every message incurs the communication 
overhead. 

mss p

mh

mh

mh

i

j

k

m

m

m1

2

3

x
failure

re-transmit

time

 

Fig.1  Message order and duplicate message 

The second problem different from that in m-MSS-m network is that the delayed message may result in 
duplicate message received in failed hosts after rollback. See Fig.1, mhj sends a message m3 to mhi, and m3 reaches 
mssp early because of the arbitrary latency time of message transmission. Then mhi incurs a failure and that m3 does 
not come yet. During the recovery, both the re-transmitted message from mssp and the delayed message from mhj 
will be received by mhi. One of the two messages must be discarded, otherwise a duplicate message will appear. In 
the proposed protocols, mssp simply logs the messages according to their arrival order, without transferring them 
and considering their arrival order in MHs. The work of identifying a correct sequence or justifying a duplicate 
message is done by mhi itself.  

Considering the problem of handling handoff and disconnection, if mhi intends to be disconnected from the 
network, it needs to take a checkpoint. If a handoff takes place at mhi, it first disconnects from the old MSS and then 
connects to the new MSS. When a handoff happens, checkpointing and message logging schemes may be one of the 
logging-pessimistic, Loging-lazy and Loging-trickle schemes introduced in Ref.[1], on which this paper does not 
focus. 

4.3   Independent recovery 

We design a sending agent process and a receiving agent process running in each MH to answer for each 
message sending and receiving of computation processes, illustrated in Fig.2. 

When a computation process pi need to send a message to pj, it delivers the message to the sending agent 
process. If the message is its first sending(sent_fini[j]<sent[j]), the agent process sends it out, embedded with the 
sequence number of computation message sent to pj, otherwise it is ignored. After receiving a computation message 
transmitted to pi, the receiving agent process needs to identify not only whether the message is duplicate but also the 
retransmitted message’s order. If there exists no failure, there is no duplicate message because MSS does not need to 
transfer the message in the same cell. In the case of failure, the agent process must deliver the messages to the 
computation process in the same receipt sequence as that of its pre-failure. We introduce an integer vector rec_ord[] 
to keep track of the order of the message (not message itself) delivered to the computation process. After receiving a 
message, the order is piggied back to the rec_ord[], see Fig.2. The order information is stored in a local stable 
storage, thus it can not be lost. Moreover no excess information attached to the message decreases the 
communication overhead. 

  



 140 Journal of Software  软件学报  2005,16(1)    

send buffer

Sending agent process

Receive buffer

m1 m2

Receiving agent process

Computation
process pi

Computation
message

mhi

rec_ord[]

m3m3
m3m2m1

 

Fig.2  Message sending and receipt 
Assume pi fails or needs to reconnect, the rollback agent process sends a rollback request message to the mssp. 

The mssp responds by sending checkpoint, then pi restores from the checkpoint and restarts. Sequentially the MSS 
replays the logged messages. The pseudocode for the algorithm is presented as follows. 

 
Checkpoint agent process at mhi, act periodically or when a disconnection occurs 

 take a checkpoint for computation process; 
 send(checkpoint, sent[], recv[], rec_sum) to mssp; 

rollback agent process at mhi, act when a failure occurs in mhi or when a reconnection happens 
 send rollback request to mssp; 
receive(checkpoint, sent[], recv[], rec_sum); 
pi restarts from checkpoint; 

rollback agent process at mssp, act when receiving rollback request of mhi 
send(checkpoint, sent[], recv[], rec_sum) to mhi; 
send the logged message if sent[i] in it is originally sent by mhj 
recv[j] when rollback is not over; 

sending agent process at mhi, act when pi attempts to send a message to pj  

sent[j]++; 
if (sent_fini[j]<sent[j]) 
 {send(sent[j], message); sent_fini[j]++;}  

receiving agent process at mhi, act when receiving a message transmitted to pi  

if (rec_sum<>rec_num) 
 a: for every message in the receiving buffer 
  /*pid_m is the ID of computation process that sends this message*/ 
  if (sent[i] in a message =rec_ord[rec_sum+1].inum and pid_m=rec_ord[rec_sum+1].pid) 
   {deliver the message to pi; rec_sum++; recv[pid_m]++; goto a} 
if (rec_sum=rec_num) 
 if during rollback then send(rollback is over) to mssp; 
 b: for every message in buffer 
  {for(n= 1; rec_sum; n++) 
   if (sent[i] in a message =rec_ord[n].inum and pid_m=rec_ord[n].pid) 
    the message is ignored and goto b; /*duplicate message*/ 
   rec_sum++; recv[pid_m]++; rec_num++; 

  



 李庆华 等:一种面向移动计算的低代价透明检查点恢复协议 141 

   rec_ord[rec_sum]=(pid_m, sent[i] in the message); 
   deliver message to pi; 
  } 

4.4   Proof of correctness 

The following definitions are based on the mobile computing system model described in section 3. 
Definition 1. Depend(m) is a set containing all computation processes whose state reflects the delivery of 

message m. Depend(m) includes the destination process of m and any process whose message receipt events happen 
causally after the receipt of m . The m.dest is the destination process’s Id of m. Formally 

{ })(.,)( . j
hbm

destm
m
jhj rrrdestmjjpmDepend →∨∧=∈= υ . 

Definition 2. Memory(m) is a set including all processes that have a copy of m in volatile memory. Process 
pm.dest is a member of Memory(m) after it receives m. 

Definition 3. Process pi is an orphan of C if pi itself does not fail and pi’s state depends causally on the 
delivery of m, where C is a set of the failed processes. Formally: 

{ })))(())(((:)( CmMemorymDependpmCppCOrphan iii ⊆∧∈∃∧∈= . 

Lemma 1. The proposed protocol guarantees that no set C of a failed process creates orphan processes. 
Proof.  Under the condition of reliable communication and MSSs, every computation message that is sent is 

safely logged in a stable storage, which means message m can be restored if it is lost. 
Thus { } ))()((: . mMemorypmDependm destm ⊆⊆∀  holds, 

then )()))(())(((: CorphanCmDependCmMemorym ⇔⊆⇒⊆∀  holds. 

Hence, no orphan process of C is created. 
Lemma 2. If a process pi is failed, its state can be reconstructed independently. 

Proof.  Let pi’s state be [ ] before failure, which indicates events , where l≤y,  

is the first event from the last checkpoint and  is the last event before failure. After a failure, p

l
iii sss ,...,, 10 y

i
x
i

x
ii eeee ,...,,,..., 10 − x

ie
y
ie
xe, +

i should rollback 

and replay all of the events that start events . y
ii

x
i ee ,...,1

During recovery, pi “sends” messages following the execution step itself and replays the sending event ei in the 
same sequence as pre-failure, but they aren’t indeed delivered to other computation processes due to the fact that 
sent_fini[] is larger than the corresponding sent[]. On the other hand, message receipt is dealt with by the following 
cases: 

Case 1: Messages retransmitted by MSS in a wrong order are delivered to pi according to the receipt order of 
the pre-failure stored in rec_ord[], which is responded by the iteration a in receiving agent process. 

Case 2: The duplicate message is discarded. Once a message is delivered to pi, its sent[] in the message is a 
recorder in rec_ord[]. The for-cycle in iteration b takes charge of identifying whether a message is a duplicate one 
or not. 

Case 3: During recovery, if other processes send messages to pi, the proposed algorithm guarantees these 

messages are delivered to pi until all message receipt events  are complete(rec_sum=rec_num). l
ii rr ,...,0

Because all messages sent and the receipt events  are replayed, the py
i

x
i

x
i eee ,...,, 1+

i’s state is reconstructed. 

Theorem 1. The proposed protocol enables the system to be recovered to a global consistent state in the case 

  



 142 Journal of Software  软件学报  2005,16(1)    

of f(f≥1) concurrent failures. 
Proof.  A global state of the system is composed of a set of local states of the processes in the mobile 

computing system. The theorem is true obviously from Lemma 1 and Lemma 2, i.e. the failed processes can 
independently be recovered but without creating any orphan process. 

5   Performance Evaluation 

The performance metrics concerned in this paper are the fail-free overhead and recovery overhead. A mobile 
computing environment is simulated, which consists of 15 MHs and, for simplicity, only one MSS. The bandwidth 
is 2 MB. The lengthes of computation message and system message are 1 KB and 50 bytes respectively. The size of 
checkpoint is 2 MB and the disk bandwidth is 1.7 MB. The checkpoint interval is 100s. The failure rate of a process 
is 10−2, following a poisson process. The message sending and receiving are randomly. An ideal checkpointing-only, 
optimistic message logging and the proposed protocol scheme are brought into comparison. 

The fail-free overhead is the system’s execution time when it finishes the specific number of message sending 
events without failures. The measured time when the number of the finished events is 450, 900, 1500 and 1800 
respectively and the message sending rate r is 0.1 is given in Fig.3. From the fail-free overhead data we can see that 
the proposed approach has the least time in every case due to the fact that there are no need for the coordination 
overhead in the checkpoint only protocol, no need for the delay of logging messages in the pessimistic log protocol 
which slows down the throughput of the MSS even when no failure, and no need for the forwarding message latency 
in the optimistic approach which strengthens contention probability on the wireless network. 

300

600

900

1200

Fa
il-

Fr
ee

 o
ve

rh
ea

d(
s)

ckpt
log(m-MSS-m)
log(m-m)

450 900 1500 1800

0.3

0.35

0.4

0.45

2th 4th 6th 8th

R
el

at
iv

e 
re

co
ve

ry
 o

ve
rh

ea
d

m-mss-m r=0.1

m-m r=0.1

m-mss-m r=0.2

m-m r=0.2

 
 Fig.3  Fail-Free overhead Fig.4  Relative recovery overhead 

Recovery overhead is the time obtained by measuring the time for a process to read the checkpoint and proceed 
to a specific execution point. We choose the point to be after the 2nd, 4th, 6th, and 8th sending events of the last 
checkpoint. The message sending raters in our experiments are 0.2 and 0.1. For a distinct indication of the results, 
the relative values of the recovery overhead showed in Fig.4 are adopted, which are the ratio of the recovery 
overhead using m-MSS-m log to that using checkpointing-only and the ratio of the recovery overhead using m-m 
log to that using checkpointing-only. It can be seen from the data in Fig.4 that the recovery using log is dramaticly 
faster than that using the checkpointing-only approach. The reason is that processes do not have to wait for the 
synchronous messages. The proposed approach also incurs a slightly less recovery overhead than the m-MSS-m log 
approach, and the improvement on the m-MSS-m log may increase with the back off the execution point. One 
possible explanation is that the transmission latency of messages that are sent out after the failure point in the 
m-MSS-m log scheme is larger than that in the m-m log scheme. In addition, we find out that the proposed scheme 
provides a less recovery overhead with a larger message sending rate. 

  



 李庆华 等:一种面向移动计算的低代价透明检查点恢复协议 143 

6   Conclusion and Future Work 

After discussing the traditional recovery protocols, this paper proposes a message logging protocol for a 
mobile host to mobile host communication wireless network, which benefits from the decreasing contention and 
message transmission latency, and then the correctness of algorithms is proofed. The performance of the proposed 
approach is evaluated with the simulation results, which indicates that our approach provides a better performance 
in terms of the fail-free overhead and recovery overhead than the traditional approaches. In future, we will study the 
protocol on unreliable MSSs and compare the performance with the conventional schemes based on a real system. 

Acknowledgement  The authors would like to thank the anonymous reviewers of this paper for their insightful 
comments and suggestions. 

References:  
[1]   Pradhan DK, Krishna P, Vaidya NH. Recovery in mobile environments design and trade-off analysis. In: Tohma Y, ed. Proc. of the 

26th Int’l Symp. Fault-Tolerant Computing. Sendai: IEEE Press, 1996. 16−25. 

[2]   Koo R, Touge S. Checkpoinging and rollback-recovery for distributed systems. IEEE Trans. on Software Engineering, 

1987,13(1):23−31. 

[3]   Kim JL, Park T. An efficient algorithm for checkpointing recovery in distributed systems. IEEE Trans. on Parallel and Distributed 

Systems, 1993,4(8):955 960. 

[4]   Chandy KM, Lamport L. Distributed snapshots: Determining global states of distributed systems. ACM Trans. on Computer 

Systems, 1985,3(1):63−75. 

[5]   Ramanathan P, Shin KG. Use of common time base for checkpointing and rollback recovery in a distributed system. IEEE Trans. 

on Software Engineering, 1993,19(6):571−583. 

[6]   Elnozahy EN, Johnson DB. The performance of consistent checkpointing. In: Harris C, ed. In: Proc. of the 11th Symp. on Reliable 

Distributed Systems. Houston: IEEE Press, 1992. 86−95. 

[7]   Silva LM, Silva JG. Global checkpointing for distributed programs. In: Harris C, ed. Proc. of the 11th Symposium on Reliable 

Distributed Systems. Houston: IEEE Press, 1992. 155−162. 

[8]   Prakash R, Singhal M. Low-Cost checkpointing and failure recovery in mobile computing systems. IEEE Trans. on Parallel and 

Distributed Systems, 1996,7(10):1035−1048. 

[9]   Manivannan D, Singhal M. Quasi-Synchronous checkpointing: Models, characterization and classification. IEEE Trans. on Parallel 

and Distributed Systems, 1999,10(7):703−713. 

[10]   Guohong C, Singhal M. Mutable checkpoints: A new checkpointing aporach for mobile computing systems. IEEE Trans. on 

Parallel and Distributed Systems, 2001,12(2):157−172. 

[11]   Wang YM. Maximum and minimum consistent global checkpoints and their applications. In: Sipple RS, ed. Proc. of the 14th Symp. 

on Reliable Distributed Systems. Bad Neuenahr: IEEE Press, 1995. 86−95. 

[12]   Randell BL. System structure for software fault tolerance. IEEE Trans. on Software Engineering, 1975,1(2):16−25. 

[13]   Wang YM, Fuchs WK. Lazy checkpoint coordination for bounding rollback propagation. In: Werner R, ed. Proc. of the 12th Symp. 

on Reliable Distributed Systems. Princeton: IEEE Press, 1993. 78−85. 

[14]   Alvisi L, Marzullo K. Message logging: Pessimistic, optimistic, causal, and optimal. IEEE Trans. on Software Engineering, 

1998,24(2):145−149. 

[15]   Elnozahy EN, Zwaenepoe W. Manetho: Transparent rollback-recovery with low overhead, limited rollback and fast output commit. 

IEEE Trans. on Computers, 1992,41(5):526−531. 

[16]   Yao B, Ssu KF, Fuchs WK. Message logging in mobile computing. In: Martin DC, ed. Proc. of the 29th Fault-Tolerant Computing 

Symp. Madison: IEEE Press, 1999. 14−19. 

[17]   Park T, Yeom HY. An asynchronous recovery scheme based on optimistic message logging for mobile computing systems. In: 

Werner B, ed. Proc. of the 20th Int’l Conf. on Distributed Computing Systems. Taipei: IEEE Press, 2000. 436−433. 

  



 144 Journal of Software  软件学报  2005,16(1)    

[18]   Venkatesan S. Optimistic crash recovery without changing application messages. IEEE Trans. on Parallel and Distributed Systems, 

1997,8(3):263−271. 

[19]   Rao S, Vin HM. The cost of recovery in message logging protocols. In: Palagi L, ed. Proc. of the 17th Symp. on Reliable 

Distributed Systems. West Lafayette: IEEE Press, 1998. 10−18. 

[20]   Pei D, Wang DS, Shen MM, Zheng WM. WOB: A novel approach to checkpoint active files. Acta Electronica Sinica, 

2000,28(5):9−12 (in Chinese with English abstract). 

[21]   Li KY, Yang XZ. Improving the performance of a checkpointing scheme with task duplication. Acta Electronica Sinica, 

2000,28(5):33−35 (in Chinese with English abstract). 

[22]   Wei XH, Ju JB. SFT: A consistent checkpointing algorithm with short freezing time. Chinese Journal of Computers, 1999,22(6): 

645−650 (in Chinese with English abstract). 

[23]   Wang DS, Shen MM, Zheng WM, Pei D. A checkpoint-based rollback recovery and processes migration system. Journal of 

Software, 1999,10(1):69−73 (in Chinese with English abstract). 

[24]   Lamport,L. Time, clocks, and the ordering of events in distributed systems. Communications of the ACM, 1978,21(7):558−565. 

[25]   Higaki H, Takizawa M. Checkpointing-Recovery protocol for reliable mobile systems. In: Palagi L, ed. Proc. of the 17th Symp. on 

Reliable Distributed Systems. West Lafayette: IEEE Press, 1998. 93−99. 

附中文参考文献:  
[20]  裴丹,汪东升,沈美明,郑纬民.WOB:一种新的文件检查点设置策略.电子学报,2000,28(5):9−12. 

[21]  李凯原,杨孝宗.提高用任务重复的检查点方案的性能.电子学报,2000,28(5):33−35. 

[22]  魏晓辉,鞠九滨.SFT:一个具有较短冻结时间的一致检查点算法.计算机学报,1999,22(6):645−650. 

[23]  汪东升,沈美明,郑纬民,裴丹.一种基于检查点的卷回恢复与进程迁移系统.软件学报,1999,10(1):69−73. 

 

************************************************************************************************************* 

第 1 届中国分类技术及应用研讨会(CSCA 2005) 
征 文 通 知 

2005 年 9 月 23−25 日  北京 

CSCA 2005 由中国计算机学会人工智能与模式识别专业委员会主办，由北京交通大学承办。分类是知识处理的基本问题，本

次会议旨在推动分类技术研究及相关应用的发展，促进相关科技单位和个人的科技合作和学术交流，以及探讨分类与数据分析技

术的研究与应用所面临的挑战性问题及关键性研究课题。会议录用论文将由《计算机研究与发展》（正刊，增刊）正式出版，会议

还将评选大会优秀论文和研究生优秀论文。我们诚征有关分类和数据分析领域的最新创新性成果，包括分类和数据分析的原理、

方法、算法以及特定领域的实际应用等。 

征稿范围（不局限于下述范围）： 

分类技术基础理论：监督学习，半监督学习，聚类技术，PLS 路径建模和分类，集成分类技术，多标签分类和 Preference 学

习，多事例分类，Multimode 聚类和降维，差异性和聚类结构，分类和聚类算法复杂性…… 

领域相关的分类和聚类技术：数据密集场景中的分类，文本分类和聚类，Web 页面分类和聚类，时间序列的分类和聚类， 图

像与视频检索，计算机视觉中的分类，生物特征识别中的分类…… 

分类技术应用：银行、金融、保险、市场营销、经济分析，商务智能，知识工程，目标识别，生物信息学、生物统计学，医

药和健康科学，信息安全…… 

投稿要求：(1) 论文应是未发表的研究成果，论文要求中文，采用 word 文件排版，论文请参照《计算机研究与发展》网页“作

者须知”中的“最终修改稿要求”（http://crad.ict.ac.cn）书写，论文格式参考 2005 年第 1 期执行。(2) 会议论文采用网上提交方式，

在提交论文的同时，必须提交一份投稿声明（从 http://crad.ict.ac.cn 网站下载），作者逐一签字后邮寄或传真到大会会务组，对不

提交投稿声明的论文，会议将不予受理。 

重要日期：截稿日期 2005-04-25，录用通知日期 2005-05-25，论文提交日期 2005-06-10 

来稿请寄：100044 北京交通大学计算机学院  联系人：田凤占 

电话：010-51688451，传真：010-51840526，E-mail: fztian@center.njtu.edu.cn 

  


	Introduction
	Related Work
	System Model
	The Proposed Recovery Protocols
	Data structure
	Independent checkpoint and message logging
	Independent recovery
	Proof of correctness

	Performance Evaluation
	Conclusion and Future Work

