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Abstract: Mobile computing brings new challenges and requirements for checkpointing and recovery protocol. 
Existing checkpointing-only schemes can not guarantee the independent recovery through creating global consistent 
checkpoints. Message logging schemes based on mobile-MSS-mobile communication that exchanges messages 
among mobile hosts may incur large contention on the wireless network and high latency for message transmission 
relative to the direct mobile host to mobile host (m-m) communication. This paper presents a novel recovery 
protocol for m-m communication, in which two key problems, message order and duplicate message, are effectively 
solved. A proof of the protocol correctness is also given. Finally, simulation results indicate that the performance of 
the proposed approach is better than that of the traditional approaches in terms of fail-free and recovery overhead. 
Key words: mobile computing; checkpoint; message logging; rollback recovery 

摘  要: 移动计算系统中的检查点恢复协议面临着许多与传统分布式系统所不同的问题.在目前已出现的支持移

动计算的检查点恢复机制中,基于建立全局一致的检查点的方法不能确保错误的独立恢复;基于 m-MSS-m 通信的

消息日志方法其移动站之间交换的消息需通过移动基站的转发.提出了一种基于消息日志的支持移动站之间直接

通信(m-m)的容错协议并给出了相应的算法及正确性证明.与 m-MSS-m 通信相比,m-m 通信有利于降低信道冲突;
减少消息传递延迟.仿真结果表明,所设计的协议比传统协议具有更小的无错误状态下引入负载和错误恢复时间. 
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1   Introduction 

Recent wireless-LAN and personal-computer technology have made mobile computing realizable. A mobile 
computing system is a distributed system consisting of mobile hosts(MHs) that can move from one location to 
another and mobile support hosts(MSSs). MSSs are interconnected by a wired high speed network and their 
physical locations do not change. The geographical area covered by a wireless interface is called a cell. The mobile 
network is divided into multiple wireless cells. MHs keep moving from one cell to another. An MH communicates 
with another MH in another cell only through the MSS. Mobile computing raises many new issues: The bandwidth 
of a wireless LAN is lower than that of a wired LAN. Thus, the communication overhead must be minimized. The 
mobile hosts do not have so much capacity of the battery that it can not communicate with the other hosts for a long 
time and can not store very large data into its local storage to save energy. Handoffs and frequent disconnection 
because of lacking of the battery power are at large. That an MH leaves a cell and joins another cell immediately is 
called a handoff. Application/computation processes are required to continue their computation even when handoffs 
and disconnection occur. 

Considering the fact that the MHs are vulnerable to failure, it is very necessary for a mobile computing system 
to be equipped with a checkpointing recovery facility. The state of a process is periodically saved on a stable 
storage, which is called a checkpoint. When failure occurs, the system rollbacks to restart its execution from the 
checkpoint and the messages that have been sent but not received are restored. Many checkpointing recovery 
protocols are reported[1−19]. However they are expensive and not adequate for mobile computing. The past protocols 
can be mainly divided into two categories: checkpointing-only and message logging. Checkpointing-only protocols 
have a common problem in rollback, which is that they need the exchange of extra synchronous messages. Recent 
work has shown that message logging has a decided advantage in recovery for mobile computing[1]. However 
message logging schemes are typically based on m-MSS-m communication. Exchanged messages among MHs in a 
same cell are retransmitted by the MSS, which increases the contention possibility and the latency for message 
transmission. 

This paper presents a novel recovery protocol that can support m-m communication, which exchanges the 
message directly and is more suitable for the features of low bandwidth, fragile connection, and frequent failures. 
The rest of this paper is organized as follows: the related work is provided in section 2. Section 3 presents the 
system model. Section 4 is the proposed protocol description. Simulation results are given in section 5. Finally, 
section 6 gives our conclusions. 

2   Related Work 

Blocking coordinated checkpointing and recovery protocols[2−5] and nonblocking checkpointing schemes[6,7] 

have been extensively studied. They require the processes in system to synchronize their checkpointing or recovery 
activities in order to reach a global consistent state so that the reception of messages is recorded only if the 
corresponding sending has been recorded. Fixed hosts take consistent checkpoints by using synchronous protocols 
with the help of a high speed wired network and adequate stable storages. However, any kind of synchronization or 
coordination among MHs is not suitable due to the low network bandwidth, frequent disconnection, and insufficient 
storages. 

References [8−10] discuss a synchronous checkpointing protocol for mobile hosts. The processes coordinate 
their checkpointing actions in such a way that the set of local checkpoints taken is consistent. Whenever a process 
requests to take a checkpoint, a set of processes must be checked and some of them may also need to take their 
checkpoints in order to preserve consistency. However, they are not adequate, because of the large number of 
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coordination messages exchanged between the MHs and processes participating in the coordination.  
Asynchronous checkpointing[11] takes checkpoint periodically without any coordination with others. To recover 

from a failure, a process communicates with other processes to determine if their local states are causally related. 
However, this approach may suffer from the domino effect. 

Communication-pattern based checkpointing[12] allows a process to take consistent checkpoints independently. 
The MHs may have to transfer a checkpoint with every outgoing message. In the worst case, the low bandwidth 
wireless network can not afford it. Communication-induced checkpointing[13] is difficult for all MHs to achieve 
synchronous realtime clock since message transmission delay is diverse and time-variant. 

When the recovery is concerned, checkpointing only schemes may cause recursive rollbacks because of the 
livelock problem[2]. On way to guarantee the asynchronous recovery is the message logging in addition to the 
checkpointing. Message logging protocols are classified into three categories: pessimistic, optimistic, and causal. 
Causal protocols[14,15] require a large size of log space and also a large amount of dependency information to be 
carried in a message, which can be a serious drawback in the mobile environment. Pessimistic protocols[16] 
potentially block a process for each message it receives. This can slow down the throughput of the processes even 
when no process ever crashes. Optimistic protocols[17,18] , with a less message overhead than that of pessimistic, 
take the small risk of creating orphans and suffer from the transfer communication overhead. Rao compared the cost 
of recovery for different message logging approaches[19]. 

In China, some scholars have done many significant works about checkpoint and recovery[20−23]. 
Existing message logging schemes based on m-MSS-m communication are faster in recovery than that of the 

checkpointing only. However m-m communication benefits from reducing the contention on the wireless network, 
decreasing the latency for message transmission and increasing the throughput of MSSs. Thus, it is important to 
develop a new checkpointing recovery protocol for m-m mobile computing. 

3   System Model 

A mobile computing system Ω=〈υ,τ〉 consists of a setυs={mss1,mss2,…,mssn} of MSSs, a setυh={mh1, 
mh2,…,mhm} of MHs, and a setτ υ⊆ 2 of communication channels. The network is divided into multiple cells. 

Each cell is supported by an MSS. The mhi communicates directly with mhj in the same cell and yet throughυs with 
mhk in another cell. This is realized by using wireless LAN protocols such as IEEE802.11, which is inherently 
broadcast-based. Message transmitted from a MH is received by a destination MH including the MSS in a same cell. 

Distributed computation in a mobile computing environment is performed by a set of processes running 
concurrently onΩ(in the later section, the computation process run at mhi is denoted by pi). The computation is 
event-driven, and a message sending or a message receipt is called an event. Let  denote the x-th event of the 
process p

x
ie

i. Let H be the set of all the events produced by a distributed computation. This computation is modeled by 

the partially order set , where  denotes the happen before relation),(
^
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In addition to satisfying the happen before relation, the computation is also dependent on the states of the 
process, because a recovery process may not produce the same run upon recovery even if the same set of messages 
are sent to it since they may not be redelivered in the same sequence as previous failure. Process, pi, experiences a 
sequence of state transits during its execution. Let denote the m-th message receipt event of process pm

ir i. The m-th 

state of pi, , indicates the sequence of the event generated between  and  (including r ), where m>0 m
is 1−m
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m
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and  is the initial event. Let p0
ir i’s state [s i ] represent the sequence of all states up to . m

ii ss ,...,, 10 m
is

In our model, a reliable message delivery is assumed, and the message transmission delay is assumed to be 
finite but arbitrary. The links abide by the FIFO communication. MHs are fragile but MSSs are reliable. Processes 
are failure stopped, and all failures result in halting a failed process immediately. The computation is assumed to 
follow the piece wise deterministic model. 

4   The Proposed Recovery Protocols 

The proposed recovery is based on the independent checkpoint, message logging and asynchronous 
rollback-recovery. We implement this approach with the help of the agent technique. A group of agent processes are 
in charge of taking checkpoint, message sending, receiving, and rollbacking, which is transparent to the 
computation. 

4.1   Data structure 

The following data structure is adopted in the proposed recovery algorithm: 
sent[] and recv[]: two integer array variables managed by each MH in the volatile storage. For process pi, 

sent[j] and recv[j] are equal to the sequence number of the computation messages sent to and received from process 
pj, respectively. 

rec_sum: an integer variable managed by each MH in the volatile storage. It records the total number of the 
messages that each MH received. 

sent_fini[]: an integer vector maintained by each MH in its stable storage. The message number that pi has ever 
sent to pj is stored in sent_fini[j]. 

rec_num: an integer value in each MH’s stable storage. It is used to record the total number of the messages 
that each MH has ever received. 

rec_ord[]: a tuple (pid,inum) vector maintained by each MH in its stable storage. We use it to keep track of a 
message’s arrival order. The pid means the process Id that sends the message, and the inum indicates the sequence 
number of the message receipt. For example, for process p1, rec_ord[5]=(2,3) indicates that the 5-th message 
received by p1 is the 3-th message sent to p1 by p2. 

4.2   Independent checkpoint and message logging 

Each mobile host periodically takes a checkpoint and the time interval between two consecutive checkpoints is 
determined by itself. The checkpoint with the related send[], recv[] and rec_sum is transmitted to a MSS, say mssp, 
to be saved into mssp’s stable storage. The message log is managed by mssp. Each message delivered to mhi by mhj 
is also received by mssp, what mssp needs to do is to log the message but not to transfer it when rollback or when 
mhi and mhj are not in a same cell. When a new checkpoint is taken, the previous message log and the checkpoint 
are discarded. 

Two special issues must be properly solved, shown in Fig.1, which never occurrs in m-MSS-m communication 
network. 

The first problem is the order of message receipt in recovery. It can be seen from Fig.1 that the order of 
messages m1 and m2 received by mhi is m1, m2, but the order reaching mssp is m2, m1. Thus when rollback happens 
after a failure occurrs in mhi, mssp can not confirm the arrival order of m1, m2 in mhi. In other words, it is impossible 
for mssp to store messages into a message log in the same order as mhi does by only receiving them from a 
broadcasted wireless LAN protocol. 

One idea to get a correct order is that mhi stores messages in a volatile storage temporarily and transmits them 
to mssp for storing into a stable storage. However mhi does not always have enough storage and this will increase 
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communication overhead. Another idea introduced by Ref.[25] is to store the messages in mssp without order. When 
mhi needs to send a computation message, say m4, it attaches the message arrival order to m4. However this 
approach may not work correctly, such that a failure occurrs in mhi before it sends message m4. As a result, the order 
information may be lost. In addition, extra order information appended to every message incurs the communication 
overhead. 
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Fig.1  Message order and duplicate message 

The second problem different from that in m-MSS-m network is that the delayed message may result in 
duplicate message received in failed hosts after rollback. See Fig.1, mhj sends a message m3 to mhi, and m3 reaches 
mssp early because of the arbitrary latency time of message transmission. Then mhi incurs a failure and that m3 does 
not come yet. During the recovery, both the re-transmitted message from mssp and the delayed message from mhj 
will be received by mhi. One of the two messages must be discarded, otherwise a duplicate message will appear. In 
the proposed protocols, mssp simply logs the messages according to their arrival order, without transferring them 
and considering their arrival order in MHs. The work of identifying a correct sequence or justifying a duplicate 
message is done by mhi itself.  

Considering the problem of handling handoff and disconnection, if mhi intends to be disconnected from the 
network, it needs to take a checkpoint. If a handoff takes place at mhi, it first disconnects from the old MSS and then 
connects to the new MSS. When a handoff happens, checkpointing and message logging schemes may be one of the 
logging-pessimistic, Loging-lazy and Loging-trickle schemes introduced in Ref.[1], on which this paper does not 
focus. 

4.3   Independent recovery 

We design a sending agent process and a receiving agent process running in each MH to answer for each 
message sending and receiving of computation processes, illustrated in Fig.2. 

When a computation process pi need to send a message to pj, it delivers the message to the sending agent 
process. If the message is its first sending(sent_fini[j]<sent[j]), the agent process sends it out, embedded with the 
sequence number of computation message sent to pj, otherwise it is ignored. After receiving a computation message 
transmitted to pi, the receiving agent process needs to identify not only whether the message is duplicate but also the 
retransmitted message’s order. If there exists no failure, there is no duplicate message because MSS does not need to 
transfer the message in the same cell. In the case of failure, the agent process must deliver the messages to the 
computation process in the same receipt sequence as that of its pre-failure. We introduce an integer vector rec_ord[] 
to keep track of the order of the message (not message itself) delivered to the computation process. After receiving a 
message, the order is piggied back to the rec_ord[], see Fig.2. The order information is stored in a local stable 
storage, thus it can not be lost. Moreover no excess information attached to the message decreases the 
communication overhead. 
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Fig.2  Message sending and receipt 
Assume pi fails or needs to reconnect, the rollback agent process sends a rollback request message to the mssp. 

The mssp responds by sending checkpoint, then pi restores from the checkpoint and restarts. Sequentially the MSS 
replays the logged messages. The pseudocode for the algorithm is presented as follows. 

 
Checkpoint agent process at mhi, act periodically or when a disconnection occurs 

 take a checkpoint for computation process; 
 send(checkpoint, sent[], recv[], rec_sum) to mssp; 

rollback agent process at mhi, act when a failure occurs in mhi or when a reconnection happens 
 send rollback request to mssp; 
receive(checkpoint, sent[], recv[], rec_sum); 
pi restarts from checkpoint; 

rollback agent process at mssp, act when receiving rollback request of mhi 
send(checkpoint, sent[], recv[], rec_sum) to mhi; 
send the logged message if sent[i] in it is originally sent by mhj 
recv[j] when rollback is not over; 

sending agent process at mhi, act when pi attempts to send a message to pj  

sent[j]++; 
if (sent_fini[j]<sent[j]) 
 {send(sent[j], message); sent_fini[j]++;}  

receiving agent process at mhi, act when receiving a message transmitted to pi  

if (rec_sum<>rec_num) 
 a: for every message in the receiving buffer 
  /*pid_m is the ID of computation process that sends this message*/ 
  if (sent[i] in a message =rec_ord[rec_sum+1].inum and pid_m=rec_ord[rec_sum+1].pid) 
   {deliver the message to pi; rec_sum++; recv[pid_m]++; goto a} 
if (rec_sum=rec_num) 
 if during rollback then send(rollback is over) to mssp; 
 b: for every message in buffer 
  {for(n= 1; rec_sum; n++) 
   if (sent[i] in a message =rec_ord[n].inum and pid_m=rec_ord[n].pid) 
    the message is ignored and goto b; /*duplicate message*/ 
   rec_sum++; recv[pid_m]++; rec_num++; 
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   rec_ord[rec_sum]=(pid_m, sent[i] in the message); 
   deliver message to pi; 
  } 

4.4   Proof of correctness 

The following definitions are based on the mobile computing system model described in section 3. 
Definition 1. Depend(m) is a set containing all computation processes whose state reflects the delivery of 

message m. Depend(m) includes the destination process of m and any process whose message receipt events happen 
causally after the receipt of m . The m.dest is the destination process’s Id of m. Formally 

{ })(.,)( . j
hbm

destm
m
jhj rrrdestmjjpmDepend →∨∧=∈= υ . 

Definition 2. Memory(m) is a set including all processes that have a copy of m in volatile memory. Process 
pm.dest is a member of Memory(m) after it receives m. 

Definition 3. Process pi is an orphan of C if pi itself does not fail and pi’s state depends causally on the 
delivery of m, where C is a set of the failed processes. Formally: 

{ })))(())(((:)( CmMemorymDependpmCppCOrphan iii ⊆∧∈∃∧∈= . 

Lemma 1. The proposed protocol guarantees that no set C of a failed process creates orphan processes. 
Proof.  Under the condition of reliable communication and MSSs, every computation message that is sent is 

safely logged in a stable storage, which means message m can be restored if it is lost. 
Thus { } ))()((: . mMemorypmDependm destm ⊆⊆∀  holds, 

then )()))(())(((: CorphanCmDependCmMemorym ⇔⊆⇒⊆∀  holds. 

Hence, no orphan process of C is created. 
Lemma 2. If a process pi is failed, its state can be reconstructed independently. 

Proof.  Let pi’s state be [ ] before failure, which indicates events , where l≤y,  

is the first event from the last checkpoint and  is the last event before failure. After a failure, p

l
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During recovery, pi “sends” messages following the execution step itself and replays the sending event ei in the 
same sequence as pre-failure, but they aren’t indeed delivered to other computation processes due to the fact that 
sent_fini[] is larger than the corresponding sent[]. On the other hand, message receipt is dealt with by the following 
cases: 

Case 1: Messages retransmitted by MSS in a wrong order are delivered to pi according to the receipt order of 
the pre-failure stored in rec_ord[], which is responded by the iteration a in receiving agent process. 

Case 2: The duplicate message is discarded. Once a message is delivered to pi, its sent[] in the message is a 
recorder in rec_ord[]. The for-cycle in iteration b takes charge of identifying whether a message is a duplicate one 
or not. 

Case 3: During recovery, if other processes send messages to pi, the proposed algorithm guarantees these 

messages are delivered to pi until all message receipt events  are complete(rec_sum=rec_num). l
ii rr ,...,0

Because all messages sent and the receipt events  are replayed, the py
i

x
i

x
i eee ,...,, 1+

i’s state is reconstructed. 

Theorem 1. The proposed protocol enables the system to be recovered to a global consistent state in the case 
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of f(f≥1) concurrent failures. 
Proof.  A global state of the system is composed of a set of local states of the processes in the mobile 

computing system. The theorem is true obviously from Lemma 1 and Lemma 2, i.e. the failed processes can 
independently be recovered but without creating any orphan process. 

5   Performance Evaluation 

The performance metrics concerned in this paper are the fail-free overhead and recovery overhead. A mobile 
computing environment is simulated, which consists of 15 MHs and, for simplicity, only one MSS. The bandwidth 
is 2 MB. The lengthes of computation message and system message are 1 KB and 50 bytes respectively. The size of 
checkpoint is 2 MB and the disk bandwidth is 1.7 MB. The checkpoint interval is 100s. The failure rate of a process 
is 10−2, following a poisson process. The message sending and receiving are randomly. An ideal checkpointing-only, 
optimistic message logging and the proposed protocol scheme are brought into comparison. 

The fail-free overhead is the system’s execution time when it finishes the specific number of message sending 
events without failures. The measured time when the number of the finished events is 450, 900, 1500 and 1800 
respectively and the message sending rate r is 0.1 is given in Fig.3. From the fail-free overhead data we can see that 
the proposed approach has the least time in every case due to the fact that there are no need for the coordination 
overhead in the checkpoint only protocol, no need for the delay of logging messages in the pessimistic log protocol 
which slows down the throughput of the MSS even when no failure, and no need for the forwarding message latency 
in the optimistic approach which strengthens contention probability on the wireless network. 
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 Fig.3  Fail-Free overhead Fig.4  Relative recovery overhead 

Recovery overhead is the time obtained by measuring the time for a process to read the checkpoint and proceed 
to a specific execution point. We choose the point to be after the 2nd, 4th, 6th, and 8th sending events of the last 
checkpoint. The message sending raters in our experiments are 0.2 and 0.1. For a distinct indication of the results, 
the relative values of the recovery overhead showed in Fig.4 are adopted, which are the ratio of the recovery 
overhead using m-MSS-m log to that using checkpointing-only and the ratio of the recovery overhead using m-m 
log to that using checkpointing-only. It can be seen from the data in Fig.4 that the recovery using log is dramaticly 
faster than that using the checkpointing-only approach. The reason is that processes do not have to wait for the 
synchronous messages. The proposed approach also incurs a slightly less recovery overhead than the m-MSS-m log 
approach, and the improvement on the m-MSS-m log may increase with the back off the execution point. One 
possible explanation is that the transmission latency of messages that are sent out after the failure point in the 
m-MSS-m log scheme is larger than that in the m-m log scheme. In addition, we find out that the proposed scheme 
provides a less recovery overhead with a larger message sending rate. 
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6   Conclusion and Future Work 

After discussing the traditional recovery protocols, this paper proposes a message logging protocol for a 
mobile host to mobile host communication wireless network, which benefits from the decreasing contention and 
message transmission latency, and then the correctness of algorithms is proofed. The performance of the proposed 
approach is evaluated with the simulation results, which indicates that our approach provides a better performance 
in terms of the fail-free overhead and recovery overhead than the traditional approaches. In future, we will study the 
protocol on unreliable MSSs and compare the performance with the conventional schemes based on a real system. 
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