1000-9825/2005/16(01)0135 ©2005 Journal of Software %% 1 % R Vol.16, No.1

—MEEB T ENIRRMERRE S RE L

BRE, RER, RUE

R HBEBURRE SR B ML BRI 430074)

A Transparent Low-Cost Recovery Protocol for Mobile-to-Mobile Communication

LI Qing-Hua', JIANG Ting-Yao, ZHANG Hong-Jun

(School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)
+ Corresponding author: Phn: +86-27-87544471, Fax: +86-27-87544471, E-mail: ligh@263.net, http://www.nhpcc.hust.edu.cn
Received 2002-12-16; Accepted 2003-11-10

Li QH, Jiang TY, Zhang HJ. A transparent low-cost recovery protocol for mobile-to-mobile communication.
Journal of Software, 2005,16(1):135—144. http://www.jos.org.cn/1000-9825/16/135.htm

Abstract: Mobile computing brings new challenges and requirements for checkpointing and recovery protocol.
Existing checkpointing-only schemes can not guarantee the independent recovery through creating global consistent
checkpoints. Message logging schemes based on mobile-MSS-mobile communication that exchanges messages
among mobile hosts may incur large contention on the wireless network and high latency for message transmission
relative to the direct mobile host to mobile host (m-m) communication. This paper presents a novel recovery
protocol for m-m communication, in which two key problems, message order and duplicate message, are effectively
solved. A proof of the protocol correctness is also given. Finally, simulation results indicate that the performance of
the proposed approach is better than that of the traditional approaches in terms of fail-free and recovery overhead.

Key words: mobile computing; checkpoint; message logging; rollback recovery

B B BAHTHZATORESRIWREEEFS SEAS A RXELIT AR 6 FA AR A SR I LHFH
HitE e E LIRANE T A TR AH KN E ST R REARE RN ZRE AT m-MSS-m #1549
WO B ETEASSH X K EFAEBAAENER RE T AT &R R XS shsbx 8 Ak
BAZ (m-m)# ZAE SR T AL 69 ik R E A MAER . 5 m-MSS-m B4ZA8, m-m @A A TG E A+ R,
WYY BRI AR A5 B R R PR G AR X B E 8 AR A T SN R B AR R BB).
KR Bt AT S LD S EEKRE

HEASZES: TP393 XEKFRIRAD: A

* Supported by the National Natural Science Foundation of China under Grant No.60273075 (I¥ 5 |44k %22 3£ 4>); the National
High-Tech Research and Development Plan of China under Grant No.863-306-11-01-06 (1H & H AW K&+ %1(863))

LI Qing-Hua was born in 1940. He is a professor and doctoral supervisor at School of Computer Science and Technology,
Huazhong University of Science and Technology. His research areas include mobile computing and grid computing. JIANG Ting-Yao
was born in 1969. He is a Ph.D. candidate at School of Computer Science and Technology, Huazhong University of Science and
Technology. His research area is mobile computing. ZHANG Hong-Jun was born in 1964. She is a Ph.D. candidate at School of

Computer Science and Technology, Huazhong University of Science and Technology. His research area is multi-agent.

© hEE

AT hupy/ www. jos. org. cn

136 Journal of Software #AFFIR 2005,16(1)

1 Introduction

Recent wireless-LAN and personal-computer technology have made mobile computing realizable. A mobile
computing system is a distributed system consisting of mobile hosts(MHs) that can move from one location to
another and mobile support hosts(MSSs). MSSs are interconnected by a wired high speed network and their
physical locations do not change. The geographical area covered by a wireless interface is called a cell. The mobile
network is divided into multiple wireless cells. MHs keep moving from one cell to another. An MH communicates
with another MH in another cell only through the MSS. Mobile computing raises many new issues: The bandwidth
of a wireless LAN is lower than that of a wired LAN. Thus, the communication overhead must be minimized. The
mobile hosts do not have so much capacity of the battery that it can not communicate with the other hosts for a long
time and can not store very large data into its local storage to save energy. Handoffs and frequent disconnection
because of lacking of the battery power are at large. That an MH leaves a cell and joins another cell immediately is
called a handoff. Application/computation processes are required to continue their computation even when handoffs
and disconnection occur.

Considering the fact that the MHs are vulnerable to failure, it is very necessary for a mobile computing system
to be equipped with a checkpointing recovery facility. The state of a process is periodically saved on a stable
storage, which is called a checkpoint. When failure occurs, the system rollbacks to restart its execution from the
checkpoint and the messages that have been sent but not received are restored. Many checkpointing recovery
protocols are reported! ™'?!. However they are expensive and not adequate for mobile computing. The past protocols
can be mainly divided into two categories: checkpointing-only and message logging. Checkpointing-only protocols
have a common problem in rollback, which is that they need the exchange of extra synchronous messages. Recent

1 However

work has shown that message logging has a decided advantage in recovery for mobile computing
message logging schemes are typically based on m-MSS-m communication. Exchanged messages among MHs in a
same cell are retransmitted by the MSS, which increases the contention possibility and the latency for message
transmission.

This paper presents a novel recovery protocol that can support m-m communication, which exchanges the
message directly and is more suitable for the features of low bandwidth, fragile connection, and frequent failures.
The rest of this paper is organized as follows: the related work is provided in section 2. Section 3 presents the
system model. Section 4 is the proposed protocol description. Simulation results are given in section 5. Finally,

section 6 gives our conclusions.

2 Related Work

[2-5] [6,7]

Blocking coordinated checkpointing and recovery protocols and nonblocking checkpointing schemes
have been extensively studied. They require the processes in system to synchronize their checkpointing or recovery
activities in order to reach a global consistent state so that the reception of messages is recorded only if the
corresponding sending has been recorded. Fixed hosts take consistent checkpoints by using synchronous protocols
with the help of a high speed wired network and adequate stable storages. However, any kind of synchronization or
coordination among MHs is not suitable due to the low network bandwidth, frequent disconnection, and insufficient
storages.

References [8—10] discuss a synchronous checkpointing protocol for mobile hosts. The processes coordinate
their checkpointing actions in such a way that the set of local checkpoints taken is consistent. Whenever a process
requests to take a checkpoint, a set of processes must be checked and some of them may also need to take their

checkpoints in order to preserve consistency. However, they are not adequate, because of the large number of

© rhiEpk

http:/ www. jos. org. cn

FRAE F A @@ it AR E A & BRI X 137

coordination messages exchanged between the MHs and processes participating in the coordination.

Asynchronous checkpointing!'"! takes checkpoint periodically without any coordination with others. To recover
from a failure, a process communicates with other processes to determine if their local states are causally related.
However, this approach may suffer from the domino effect.

Communication-pattern based checkpointing!'? allows a process to take consistent checkpoints independently.
The MHs may have to transfer a checkpoint with every outgoing message. In the worst case, the low bandwidth
wireless network can not afford it. Communication-induced checkpointing!'®! is difficult for all MHs to achieve
synchronous realtime clock since message transmission delay is diverse and time-variant.

When the recovery is concerned, checkpointing only schemes may cause recursive rollbacks because of the
livelock problem[z]. On way to guarantee the asynchronous recovery is the message logging in addition to the
checkpointing. Message logging protocols are classified into three categories: pessimistic, optimistic, and causal.

[14,15]

Causal protocols require a large size of log space and also a large amount of dependency information to be

carried in a message, which can be a serious drawback in the mobile environment. Pessimistic protocols!'®
potentially block a process for each message it receives. This can slow down the throughput of the processes even

[17,18]

when no process ever crashes. Optimistic protocols , with a less message overhead than that of pessimistic,

take the small risk of creating orphans and suffer from the transfer communication overhead. Rao compared the cost

of recovery for different message logging approaches!'”.

In China, some scholars have done many significant works about checkpoint and recovery?® 2.

Existing message logging schemes based on m-MSS-m communication are faster in recovery than that of the
checkpointing only. However m-m communication benefits from reducing the contention on the wireless network,
decreasing the latency for message transmission and increasing the throughput of MSSs. Thus, it is important to

develop a new checkpointing recovery protocol for m-m mobile computing.
3 System Model

A mobile computing system @2=(v, 7) consists of a set v ={mss|,mss,,...,mss,} of MSSs, a set v,={mh,
mhy,...,mh,} of MHs, and a set 7 C v? of communication channels. The network is divided into multiple cells.
Each cell is supported by an MSS. The mh; communicates directly with m#; in the same cell and yet through v, with
mhy in another cell. This is realized by using wireless LAN protocols such as IEEE802.11, which is inherently
broadcast-based. Message transmitted from a MH is received by a destination MH including the MSS in a same cell.

Distributed computation in a mobile computing environment is performed by a set of processes running
concurrently on £(in the later section, the computation process run at mh; is denoted by p,). The computation is

event-driven, and a message sending or a message receipt is called an event. Let e denote the x-th event of the
process p,. Let H be the set of all the events produced by a distributed computation. This computation is modeled by

A

the partially order set H = (H,—"—), where —" denotes the happen before relation*!:

i=jAx<y

. x : .
e —"—e] & vIm:e =send(m) Ae] = receive(m)
b

X hb 1 1 y
vak,l:e; e, Ney e;
In addition to satisfying the happen before relation, the computation is also dependent on the states of the
process, because a recovery process may not produce the same run upon recovery even if the same set of messages
are sent to it since they may not be redelivered in the same sequence as previous failure. Process, p;, experiences a

sequence of state transits during its execution. Let 7" denote the m-th message receipt event of process p;. The m-th

1

state of p;, s/, indicates the sequence of the event generated between »"~ and r” (including #"), where m>0

© rhiEBRER

AT hupy/ www. jos. org. cn

138 Journal of Software #RAFFIR 2005,16(1)

and 7 is the initial event. Let p;’s state [s ", s!,...,s/"] represent the sequence of all states up to s;" .

In our model, a reliable message delivery is assumed, and the message transmission delay is assumed to be
finite but arbitrary. The links abide by the FIFO communication. MHs are fragile but MSSs are reliable. Processes
are failure stopped, and all failures result in halting a failed process immediately. The computation is assumed to

follow the piece wise deterministic model.

4 The Proposed Recovery Protocols

The proposed recovery is based on the independent checkpoint, message logging and asynchronous
rollback-recovery. We implement this approach with the help of the agent technique. A group of agent processes are
in charge of taking checkpoint, message sending, receiving, and rollbacking, which is transparent to the

computation.
4.1 Data structure

The following data structure is adopted in the proposed recovery algorithm:

sent[] and recv[]: two integer array variables managed by each MH in the volatile storage. For process p;,
sent[j] and recv[j] are equal to the sequence number of the computation messages sent to and received from process
D) respectively.

rec_sum: an integer variable managed by each MH in the volatile storage. It records the total number of the
messages that each MH received.

sent_fini[]: an integer vector maintained by each MH in its stable storage. The message number that p; has ever
sent to p; is stored in sent_fini[j].

rec_num: an integer value in each MH’s stable storage. It is used to record the total number of the messages
that each MH has ever received.

rec_ord[]: a tuple (pid,inum) vector maintained by each MH in its stable storage. We use it to keep track of a
message’s arrival order. The pid means the process Id that sends the message, and the inum indicates the sequence
number of the message receipt. For example, for process pi, rec_ord[5]=(2,3) indicates that the 5-th message

received by p; is the 3-th message sent to p; by p;.
4.2 Independent checkpoint and message logging

Each mobile host periodically takes a checkpoint and the time interval between two consecutive checkpoints is
determined by itself. The checkpoint with the related send([], recv[] and rec_sum is transmitted to a MSS, say mss,,
to be saved into mss,’s stable storage. The message log is managed by mss,. Each message delivered to mh; by mh;
is also received by miss,, what mss, needs to do is to log the message but not to transfer it when rollback or when
mh; and mh; are not in a same cell. When a new checkpoint is taken, the previous message log and the checkpoint
are discarded.

Two special issues must be properly solved, shown in Fig.1, which never occurrs in m-MSS-m communication
network.

The first problem is the order of message receipt in recovery. It can be seen from Fig.1 that the order of
messages m; and m, received by mh; is m;, m,, but the order reaching mss, is m,, m;. Thus when rollback happens
after a failure occurrs in m#h;, mss, can not confirm the arrival order of m,, m, in mh;. In other words, it is impossible
for mss, to store messages into a message log in the same order as mh; does by only receiving them from a
broadcasted wireless LAN protocol.

One idea to get a correct order is that m#h; stores messages in a volatile storage temporarily and transmits them

to mss, for storing into a stable storage. However mh; does not always have enough storage and this will increase

© rhiEpk

http:/ www. jos. org. cn

FRAE F A @@ it AR E A & BRI X 139

communication overhead. Another idea introduced by Ref.[25] is to store the messages in mss, without order. When
mh; needs to send a computation message, say my, it attaches the message arrival order to my. However this
approach may not work correctly, such that a failure occurrs in mh; before it sends message my. As a result, the order
information may be lost. In addition, extra order information appended to every message incurs the communication

overhead.

—>» time

mss
p .
. re-transmit
f/v / fallur&4
mh
1

m

mhk

Fig.1 Message order and duplicate message

The second problem different from that in m-MSS-m network is that the delayed message may result in
duplicate message received in failed hosts after rollback. See Fig.1, mh; sends a message mj3 to mh;, and m; reaches
mss, early because of the arbitrary latency time of message transmission. Then m#; incurs a failure and that m3 does
not come yet. During the recovery, both the re-transmitted message from mss, and the delayed message from m#h;
will be received by mh;. One of the two messages must be discarded, otherwise a duplicate message will appear. In
the proposed protocols, mss, simply logs the messages according to their arrival order, without transferring them
and considering their arrival order in MHs. The work of identifying a correct sequence or justifying a duplicate
message is done by m#; itself.

Considering the problem of handling handoff and disconnection, if m#h; intends to be disconnected from the
network, it needs to take a checkpoint. If a handoff takes place at mh; it first disconnects from the old MSS and then
connects to the new MSS. When a handoff happens, checkpointing and message logging schemes may be one of the
logging-pessimistic, Loging-lazy and Loging-trickle schemes introduced in Ref.[1], on which this paper does not

focus.
4.3 Independent recovery

We design a sending agent process and a receiving agent process running in each MH to answer for each
message sending and receiving of computation processes, illustrated in Fig.2.

When a computation process p; need to send a message to p;, it delivers the message to the sending agent
process. If the message is its first sending(sent_fini[j]<sent[j]), the agent process sends it out, embedded with the
sequence number of computation message sent to p;, otherwise it is ignored. After receiving a computation message
transmitted to p;, the receiving agent process needs to identify not only whether the message is duplicate but also the
retransmitted message’s order. If there exists no failure, there is no duplicate message because MSS does not need to
transfer the message in the same cell. In the case of failure, the agent process must deliver the messages to the
computation process in the same receipt sequence as that of its pre-failure. We introduce an integer vector rec_ord|[]
to keep track of the order of the message (not message itself) delivered to the computation process. After receiving a
message, the order is piggied back to the rec_ord[], see Fig.2. The order information is stored in a local stable
storage, thus it can not be lost. Moreover no excess information attached to the message decreases the

communication overhead.

© rhiEpk

http:/ www. jos. org. cn

140 Journal of Software #AFFIR 2005,16(1)

mh.
i

‘ Sending agent process ‘

¢ send buffer

e
1]

Computation
message

Computation
process p;

y rec_ord|

1
e

ﬁ Receive buffer

‘ Receiving agent process ‘

Fig.2 Message sending and receipt
Assume p; fails or needs to reconnect, the rollback agent process sends a rollback request message to the mss,,.
The mss, responds by sending checkpoint, then p; restores from the checkpoint and restarts. Sequentially the MSS

replays the logged messages. The pseudocode for the algorithm is presented as follows.

Checkpoint agent process at mh;, act periodically or when a disconnection occurs

take a checkpoint for computation process;

send(checkpoint, sent[], recv[], rec_sum) to mssp;

rollback agent process at mh;, act when a failure occurs in mh; or when a reconnection happens

send rollback request to mssp;
receive(checkpoint, sent[], recv[], rec_sum);

p; restarts from checkpoint;

rollback agent process at mss,, act when receiving rollback request of m#h;

send(checkpoint, sent[], recv[], rec_sum) to mh;;
send the logged message if sent[i] in it is originally sent by mh;

recv[j] when rollback is not over;

sending agent process at mh;, act when p; attempts to send a message to p;

sent[jl++;
if (sent_fini[j]<sent[j])
{send(sent[j], message); sent_fini[j]++;}
receiving agent process at mh; act when receiving a message transmitted to p;

if (rec_sum<>rec_num)
a: for every message in the receiving buffer
/*pid_m is the ID of computation process that sends this message™*/
if (sent[i] in a message =rec_ord[rec_sum+1].inum and pid m=rec_ord[rec_sum+1).pid)
{deliver the message to p;; rec_sum~++; recv[pid_m]++; goto a}
if (rec_sum=rec_num)
if during rollback then send(rollback is over) to mss,,;
b: for every message in buffer
{for(n=1; rec_sum; n++)
if (sent[i] in a message =rec_ord[n].inum and pid_m=rec_ord[n].pid)
the message is ignored and goto b; /*duplicate message™*/

rec_sum++; recv[pid_m]++; rec_num++;

© rhiEBRER

AT hupy/ www. jos. org. cn

FRAE F A @@ it AR E A & BRI X 141

rec_ord[rec_sum)=(pid_m, sent[i] in the message);
deliver message to p;;
}

4.4 Proof of correctness

The following definitions are based on the mobile computing system model described in section 3.
Definition 1. Depend(m) is a set containing all computation processes whose state reflects the delivery of
message m. Depend(m) includes the destination process of m and any process whose message receipt events happen

causally after the receipt of m . The m.dest is the destination process’s Id of m. Formally

Depend(m) = {p/.,j v, |j =m.dest n1]" v (7, Lr/.)}.

n.dest

Definition 2. Memory(m) is a set including all processes that have a copy of m in volatile memory. Process
Pm.des: 18 @ member of Memory(m) after it receives m.
Definition 3. Process p; is an orphan of C if p; itself does not fail and p,’s state depends causally on the

delivery of m, where C is a set of the failed processes. Formally:
Orphan(C) = {pi|p[eCAdm: ((p; € Depend(m)) A (Memory(m) C))}.

Lemma 1. The proposed protocol guarantees that no set C of a failed process creates orphan processes.

Proof. Under the condition of reliable communication and MSSs, every computation message that is sent is
safely logged in a stable storage, which means message m can be restored if it is lost.

Thus Vm : (Depend(m) < {pm_dm } < Memory(m)) holds,

then Vm:((Memory(m) < C) = (Depend(m) < C)) < orphan(C) holds.

Hence, no orphan process of C is created.
Lemma 2. If a process p; is failed, its state can be reconstructed independently.

1 1 , X
Proof. Let p;’s state be [s?,s[,...,sf] before failure, which indicates events ef,...,ef‘ ,€; 5ene; , where 1<y, e

i i

is the first event from the last checkpoint and e;" is the last event before failure. After a failure, p; should rollback

and replay all of the events that start events ¢,e™",...,e/ .

During recovery, p; “sends” messages following the execution step itself and replays the sending event e; in the
same sequence as pre-failure, but they aren’t indeed delivered to other computation processes due to the fact that
sent_fini[] is larger than the corresponding sent[]. On the other hand, message receipt is dealt with by the following
cases:

Case 1: Messages retransmitted by MSS in a wrong order are delivered to p; according to the receipt order of
the pre-failure stored in rec_ord[], which is responded by the iteration a in receiving agent process.

Case 2: The duplicate message is discarded. Once a message is delivered to p;, its sent[] in the message is a
recorder in rec_ord[]. The for-cycle in iteration b takes charge of identifying whether a message is a duplicate one
or not.

Case 3: During recovery, if other processes send messages to p;, the proposed algorithm guarantees these

messages are delivered to p; until all message receipt events r,”,...,r.’ are complete(rec_sum=rec_num).

i

X+l

Because all messages sent and the receipt events e/ ,e;,...,e; are replayed, the p,’s state is reconstructed.

Theorem 1. The proposed protocol enables the system to be recovered to a global consistent state in the case

© hlEE

http:/ www. jos. org. cn

142 Journal of Software #AFFIR 2005,16(1)

of f{(f21) concurrent failures.
Proof. A global state of the system is composed of a set of local states of the processes in the mobile
computing system. The theorem is true obviously from Lemma 1 and Lemma 2, i.e. the failed processes can

independently be recovered but without creating any orphan process.
5 Performance Evaluation

The performance metrics concerned in this paper are the fail-free overhead and recovery overhead. A mobile
computing environment is simulated, which consists of 15 MHs and, for simplicity, only one MSS. The bandwidth
is 2 MB. The lengthes of computation message and system message are 1 KB and 50 bytes respectively. The size of
checkpoint is 2 MB and the disk bandwidth is 1.7 MB. The checkpoint interval is 100s. The failure rate of a process
is 107, following a poisson process. The message sending and receiving are randomly. An ideal checkpointing-only,
optimistic message logging and the proposed protocol scheme are brought into comparison.

The fail-free overhead is the system’s execution time when it finishes the specific number of message sending
events without failures. The measured time when the number of the finished events is 450, 900, 1500 and 1800
respectively and the message sending rate r is 0.1 is given in Fig.3. From the fail-free overhead data we can see that
the proposed approach has the least time in every case due to the fact that there are no need for the coordination
overhead in the checkpoint only protocol, no need for the delay of logging messages in the pessimistic log protocol
which slows down the throughput of the MSS even when no failure, and no need for the forwarding message latency

in the optimistic approach which strengthens contention probability on the wireless network.

) ckpt
1200| B log(m-MSS-m)
] log(m-m)
g 900 g 0
= £
5 B\&N . o
bt ° 04 m-mss-m r=0.
§ 600 E —B—m-mr=0.1
E § .N ——h— m-mss-m r=0.2
«© =
= 300| 7] 2 08 —B—nme02
. 5
/ &
é 03 1 1 1 1
450 900 1500 1800 = e
Fig.3 Fail-Free overhead Fig.4 Relative recovery overhead

Recovery overhead is the time obtained by measuring the time for a process to read the checkpoint and proceed
to a specific execution point. We choose the point to be after the 2nd, 4th, 6th, and 8th sending events of the last
checkpoint. The message sending raters in our experiments are 0.2 and 0.1. For a distinct indication of the results,
the relative values of the recovery overhead showed in Fig.4 are adopted, which are the ratio of the recovery
overhead using m-MSS-m log to that using checkpointing-only and the ratio of the recovery overhead using m-m
log to that using checkpointing-only. It can be seen from the data in Fig.4 that the recovery using log is dramaticly
faster than that using the checkpointing-only approach. The reason is that processes do not have to wait for the
synchronous messages. The proposed approach also incurs a slightly less recovery overhead than the m-MSS-m log
approach, and the improvement on the m-MSS-m log may increase with the back off the execution point. One
possible explanation is that the transmission latency of messages that are sent out after the failure point in the
m-MSS-m log scheme is larger than that in the m-m log scheme. In addition, we find out that the proposed scheme

provides a less recovery overhead with a larger message sending rate.

© e

http:/ www. jos. org. cn

FRAE F A @@ it AR E A & BRI X 143

6 Conclusion and Future Work

After discussing the traditional recovery protocols, this paper proposes a message logging protocol for a
mobile host to mobile host communication wireless network, which benefits from the decreasing contention and
message transmission latency, and then the correctness of algorithms is proofed. The performance of the proposed
approach is evaluated with the simulation results, which indicates that our approach provides a better performance
in terms of the fail-free overhead and recovery overhead than the traditional approaches. In future, we will study the

protocol on unreliable MSSs and compare the performance with the conventional schemes based on a real system.

Acknowledgement The authors would like to thank the anonymous reviewers of this paper for their insightful

comments and suggestions.

References:
[1] Pradhan DK, Krishna P, Vaidya NH. Recovery in mobile environments design and trade-off analysis. In: Tohma Y, ed. Proc. of the
26th Int’l Symp. Fault-Tolerant Computing. Sendai: IEEE Press, 1996. 16-25.
[2] Koo R, Touge S. Checkpoinging and rollback-recovery for distributed systems. IEEE Trans. on Software Engineering,
1987,13(1):23-31.
[3] Kim JL, Park T. An efficient algorithm for checkpointing recovery in distributed systems. IEEE Trans. on Parallel and Distributed
Systems, 1993,4(8):955960.
[4] Chandy KM, Lamport L. Distributed snapshots: Determining global states of distributed systems. ACM Trans. on Computer
Systems, 1985,3(1):63-75.
[5] Ramanathan P, Shin KG. Use of common time base for checkpointing and rollback recovery in a distributed system. IEEE Trans.
on Software Engineering, 1993,19(6):571-583.
[6] Elnozahy EN, Johnson DB. The performance of consistent checkpointing. In: Harris C, ed. In: Proc. of the 11th Symp. on Reliable
Distributed Systems. Houston: IEEE Press, 1992. 86-95.
[7] Silva LM, Silva JG. Global checkpointing for distributed programs. In: Harris C, ed. Proc. of the 11th Symposium on Reliable
Distributed Systems. Houston: IEEE Press, 1992. 155-162.
[8] Prakash R, Singhal M. Low-Cost checkpointing and failure recovery in mobile computing systems. IEEE Trans. on Parallel and
Distributed Systems, 1996,7(10):1035-1048.
[91] Manivannan D, Singhal M. Quasi-Synchronous checkpointing: Models, characterization and classification. IEEE Trans. on Parallel
and Distributed Systems, 1999,10(7):703-713.
[10] Guohong C, Singhal M. Mutable checkpoints: A new checkpointing aporach for mobile computing systems. IEEE Trans. on
Parallel and Distributed Systems, 2001,12(2):157-172.
[11] Wang YM. Maximum and minimum consistent global checkpoints and their applications. In: Sipple RS, ed. Proc. of the 14th Symp.
on Reliable Distributed Systems. Bad Neuenahr: IEEE Press, 1995. 86-95.
[12] Randell BL. System structure for software fault tolerance. IEEE Trans. on Software Engineering, 1975,1(2):16-25.
[13] Wang YM, Fuchs WK. Lazy checkpoint coordination for bounding rollback propagation. In: Werner R, ed. Proc. of the 12th Symp.
on Reliable Distributed Systems. Princeton: IEEE Press, 1993. 78-85.
[14] Alvisi L, Marzullo K. Message logging: Pessimistic, optimistic, causal, and optimal. IEEE Trans. on Software Engineering,
1998,24(2):145-149.
[15] Elnozahy EN, Zwaenepoe W. Manetho: Transparent rollback-recovery with low overhead, limited rollback and fast output commit.
IEEE Trans. on Computers, 1992,41(5):526-531.
[16] Yao B, Ssu KF, Fuchs WK. Message logging in mobile computing. In: Martin DC, ed. Proc. of the 29th Fault-Tolerant Computing
Symp. Madison: IEEE Press, 1999. 14-19.
[17] Park T, Yeom HY. An asynchronous recovery scheme based on optimistic message logging for mobile computing systems. In:

Werner B, ed. Proc. of the 20th Int’l Conf. on Distributed Computing Systems. Taipei: IEEE Press, 2000. 436-433.

© rhIEBkRES

http:/ www. jos. org. cn

144 Journal of Software #AFFIR 2005,16(1)

[18] Venkatesan S. Optimistic crash recovery without changing application messages. IEEE Trans. on Parallel and Distributed Systems,
1997,8(3):263-271.

[19] Rao S, Vin HM. The cost of recovery in message logging protocols. In: Palagi L, ed. Proc. of the 17th Symp. on Reliable
Distributed Systems. West Lafayette: IEEE Press, 1998. 10—18.

[20] Pei D, Wang DS, Shen MM, Zheng WM. WOB: A novel approach to checkpoint active files. Acta Electronica Sinica,
2000,28(5):9—-12 (in Chinese with English abstract).

[21] Li KY, Yang XZ. Improving the performance of a checkpointing scheme with task duplication. Acta Electronica Sinica,
2000,28(5):33-35 (in Chinese with English abstract).

[22] Wei XH, Ju JB. SFT: A consistent checkpointing algorithm with short freezing time. Chinese Journal of Computers, 1999,22(6):
645-650 (in Chinese with English abstract).

[23] Wang DS, Shen MM, Zheng WM, Pei D. A checkpoint-based rollback recovery and processes migration system. Journal of
Software, 1999,10(1):69-73 (in Chinese with English abstract).

[24] Lamport,L. Time, clocks, and the ordering of events in distributed systems. Communications of the ACM, 1978,21(7):558-565.

[25] Higaki H, Takizawa M. Checkpointing-Recovery protocol for reliable mobile systems. In: Palagi L, ed. Proc. of the 17th Symp. on
Reliable Distributed Systems. West Lafayette: IEEE Press, 1998. 93—99.

Mt B 325 % Sk

[20] FEFFVERTE LS, L R WOB:— Tt i SO 7 A B B SR I L T 2741,2000,28(5):9-12.

[21] ZEYU5 A 2 55 A1 e AT 45 35 52 OGS APk e H 1 2% 31-,2000,28(5):33-35.

[22] BRIEE B0 ILIE SFT:— AN B B R 45 I 18] 1 — BIOR: 7 AU v BEL A% 3R, 1999,22(6):645-650.

[23] HEARTF VRS WL B IE . — I TR A 05 06 [P 5 ERR TS R 4 4 410,1999,10(1):69-73.

sk 3k sk 3k skosk skosk kst skosk sk sk sk sk skosk skl skosk skl skosk skl skosk skosk skosk skosk skosk kol skokokoskoskokoskokkok

F 1 EPEDERARRLNAMITS(CSCA 2005)
fE 30
2005 49 A 23-25 H b

CSCA 2005 I THEALEE S N LA A SRR BUN TR S 2 170, ALt A8 @ R K b 433808 FRAL B B AR 1) 8, R
R W AEHES) 73 S AR RAR G N (R, AR BEAR SR AL RIS N IR A VE RN 22 AR AU, BARCER I 43 S 5 Bl 2 W ke
A5 W FH 3 T I PO e P) A R DG B P R . 2 IS R SORE i CPHEENLIR A S R Y CIET, 39T EaUH R, 2
NGV IE R 2 F5 0 SCRF AR T 10 3 FRAT TR AE AT 5 43 28RBS 43 A 40088) S5 07 QBT 1 R, A 4 S R0 B9 43 B 11 L 2
Jiidi Sk BA KR R AU) S B I 45 o

ARG AN JRBR T T IRJEHD:

S REARIERIE . WA, BN, BEEAR, PLS MEEBM NI, HERSRER, L85 HKM Preference %
2, 24528, Multimode JEMFFYE, ZFUERIZRIELM, HFRMBREEL I ..

FUBAH I 7 R B BOR . BB SoP i 38, SUARF RIS, Web TUMI S KRR, WHRIFHIM 7 KRR, K
BEMBHRTE, EH SR 328, AEYRIE R T 2k

SYREARNA: RAT SRl RE. WEEE. S0, MSEE FIRTRE, HREM, EMERYE ERGi, BE
AR, (SR RA.

BRGER: (1) WA RREWITIFA, @ 3CTER P 30, KA word SCHHHERR, @ ICES IR (UHEENITR S R RE) ML “fE
BN P IR AE MR E R ” (http://erad.ict.ac.en) PE, WIS % 2005 F5H 1 WIIAT. 2) SWESCRA MW #3855,
TEHEAT W SO R, AR AT — 4 BER 75 W] (M http://crad.ictac.en M3 F#), EH B —ZB PRI A RE RS S%A, A
RAERERMIR S, SV T,

MW AR H 9 2005-04-25, S A H 1 2005-05-25, @ 3CERAC H #1 2005-06-10

KFFI A 100044 LR ASH R Z VM FINAERE BER A HRAL

% 010-51688451, fHE.: 010-51840526, E-mail: fztian@center.njtu.edu.cn

ERCRTFIFFIIT https// www. jos. org. en

	Introduction
	Related Work
	System Model
	The Proposed Recovery Protocols
	Data structure
	Independent checkpoint and message logging
	Independent recovery
	Proof of correctness

	Performance Evaluation
	Conclusion and Future Work

