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Abstract; The computational time complexity is an important topic in the theory of evolutionary algorithms.
This paper introduces drift analysis inro snalysing the average time complexity of evalutionary algorithms . whick
are applicable to a wide range of evolutionary elgorithms end many problems. Based on the drifi enalysis. some
useful drift conditions to determine the time complexity of evolutionary algoritams are studied. These conditions
are applied into the fully deceptive problem to verify their efficiency.
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Evolutionary algurithms (FAsY are a powerfnl class of adaptive search algorithms. They have been used to
solve many combinatorial problems with success in recent vears, However, theories nn explaining why and how
EAs work arc still relatively few "#. The computational time complexity of FAs is largely unknown. except for a
few simple cases'*" %, Rack'™ and Muahlenbein'*' made the first step in this direction. Ambati ez af. '*! and Fogel'’
discussed the tme complexity of travelling salesman problem by simulated evoludon but without theoretical
amalysis, Ayrug and Koehler™, Hulin!®- estimated the computation time by studying stopping criterion.
Rudnlph[ﬂ"” proved that (1+1) FAs with mutation probability P = 1/%. where n is the number of bits in 4 binary
string (i e. , individual ;, converge in average time (M{n lugn) for the ONE-MAX function. but didn’t analyse other
licear functions. Draste and athers-* made a rigorons complexity analysis of EAs for linear functions with Boolean
mputs. It has been shown that GAs may take an exponential average time for some deceptive problems '¢).
Rudelph!® made a survey on this topic and pointed nut that present theoretical ctudies are restricted to certain
problems classes and simpie EAs yet.

This paper presents a more general theory about the average time complexity of FAs. The mntivation of this
study is to establish o general theory for a class of EAs. rather than a particular EA. The theory should then be
used ta derive specifie complexity results for different £EAs on different problems. The theory given in this paper

nses drift analysist® %), which can estimate the fizst hitting time by anelysing the drilt of &« Markov Chain. Sasaki
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and Hajek once used this method to anzlyse the time complexity of meximum matching preblem by simulated an-

D91 The paper shaws that it is possible to provide general framework for the finite time hehaviour of EAs,

nealing
not as the statement m Rudolph®®; the examination of the finite time behaviour of EAs cannot be treated in the
same general manner as it is possible for the Jimit behaviaur. )

The state evolution of an EA populztion can be modelied by a Markov Chain™. By analysing its drift. it is
possible to estimate the first hitting time to the optimal solution. In this way, some drift conditions will be useful
10 estimate the average first hitting time to the optimal solution and then the average time complexity of EAs is
obtained. In this paper we apply such drift conditions to the fally deceptive problem and verify these conditions,

More examples, including revisited discussion on problems and results appeared in Rudolph’s surveyl” . can be

found in our recently papert'’l,
1 Evolutionary Algorithms and Drift Analysis

1.1 Evolutionary algorithms

The cembinatorial problem considered in this paper can be formalised as follows: Chven a finite staze space 8

and a bounded function F(x), €5, find
max{f(:); +E8) (1
Let fo=max{/(z); x€ 5} be the magximum value and 1" be any optimal point with f(&" ) = .

In this paper. the space S is called the individual space where each 1€ S is called the individual, and the
produet space §*¥ =8 X... xS is called the population space, where 7€ .8 is called 1he population. denoted by
7={x1s-. . vaun’. The fitness of an individual o is f(x), and the (itness of a population 7is fOp) =max!{flo); 7
€.

The EA lor solving the combinatorial optimisarion problem ran be deseribed as follows :

(1) Iniielisation: generate, either randemly or heuristically, an initial population of 2N individuals {r1,. ..,
want s denote the population by &, and let £+-0 (where £ represents the time step).

(2) Generation: generate 2 new (intermediaze) population by & crossover and then by mutation (or only by
nutation or only by crossover), denote this population by & . 5.

(32 Selection: select 2N individuals from population &4 . €or end &) and cbtain the new (intermediate)
population and denote it by &g,

{0 Let &4, =%y and increase the time step & by 1, d«%+ 1, and go to Step 2.

Obviously the above cescription of algerithms includes a wide range of LAs using crossover, mutation and
selection. The deseription dees not set any restrictions on the 1ype of crossaver, mutation or selection schemes
used. It includes EAs which do nat use crossover or mutation.

No stopping rule appears in the description beciuse in some case the first time when an EA finds an optimal
solution may be infinitely long.

Many FAs can be modelled by a Markov chain {&; £=0.1,2,...} defined on the swate space S if the
populaticn state at time £+ 1 only depend on the state at time £, And the chain will be o hiomogeneous Markov
chain if no self-adaptation is used. In the rest of paper, EAs are assumed ta be convergent under certain
conditionst 15,

1.2 Drift analysis

For the space S, we can introduce 2 distance function &(a,r* J 10 measure the distance between i puint 7 and

an oprimal point ", As an distance function, d(x,z" ) usually satisfies the fallowing properties: d{z.z” y=0and

d(xrvx* )20 [ur any nun-optimal point x. For convenience, we denote it in short €. If the optimal points is a
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sety for example §°, then d(x) means ¢ (z.5 " y=min{d x.x" ); xES87}. Since in combinatorial optimisation, §
is always finite. without any question., we assume d ()20 and bounded.
Given a population 3= {x5... »Tax1, denote
d(py=minl{d(z):xC7y}, (27
which is used Lo measure the distance between a populaticn 7 and the optimal point. When & () =0, it means that
the ponulation 7 has already included an optimal point. The drift of Markov chain {&, £=0.1,... ] at time £ ix
defined by
MdEN)=d & ) ~d (&)
which represents one-step drift at time &, This definition is a special case of the drife delined in the general
spece . W ETA]>>0, the average drift of &, will be away from the optimal point, and if E[A]<70, the average
drift of & will he close to the optimal point.
Define the firs: hitting time of an EA as
r=min{f;d (£ 3=0}
which is the first hitting time of an EA on the optimal point. Ard Z[7]is the mean computational time when the
EA find the optimal point. The sk of time complexity of FAs now hecomes 1o investigate the relationship
between the expect first hitting time E[7_ and the space size of 5. which is often represented by an integer » in
combinatorial optimisation™®. In this paper, we focus on the following guestion: from which kind of conditions
about the drift ACZ(E) ), can we estimate the expeet first hiving vme E[r]7 In particular, we study the conditions
under which an EA is guaranteed to find the optimal solusion in polynomial time on average and conditions under

which an FA 1akes at least exponential time on average to find the optimal solution.
2 Conditivns for Polynomial Average Computation Time

2.1 Drift conditions

This section studies drift conditisns under which an EA ean solve an pptimisation problem in polynomial
average time.

Condition 1. There ¢xists a polynomial of problem size a, Ay(n)>0, such that

dprhy(n

for any given population %.

This candition savs <hat the distance from any population 7 to the optimal =olution is bounded by a polynomial
of the problem size 2.

Condition 2. There exists a peolynomial of problem size ny £ (#)>>0, such that

. e 1
ELAE S =TTs

for any time £ and population 7 with &(7)>>0, where A{d(E) 1=d(E ) —d (5.

This condition indicates that the one-step mean drift of Markov chain (&2 =0.1,2,...} is toward the
aptimal point, not eway fram the point.

If an EA is convergent, we can assume that the expect first hitting time 7 is finite, e, E[7|&]<<+oc. Now
we give the our first main result.

Theorem 1. If Markov chain {&s 2=0,1.2... .} satislies Conditions 1 and 2, then starting {rom any initial
population 7 with 4(31>0,

E[r|&s=X"="h(n),

where (n) is 2 palvnomial of probiem size a2,

Proof.  According 1o Condition 2, we know that {d(§:); £=U,1,2,. ..} in fact is a super-martingale. Since
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d{&5hy(n), it converges almost everywhere, and
lim E[d (£,) 1€ ]1=0.
According to the definition of 7, d(£.)=0. Hence,
E[d(&)|&=7]=0
for any inital population 7.
For any time 2221,
Efde) | 6=9]=E[Eld G TAW G D & 6 =7].

According to Condition 2, we have for any #—1<r,

er(ﬁ .H—A(d(& 1))‘5; I—l(dkék 1) h (n)

Therefore
ELd 06 =n]<E A6 = s 16=1 |
By induction on &. we can get
ELd (S0 16 =7]<E [d(éu)—}-ll-f;;!&,r:q].
Hence we have

o:f«:[d(&)\a]@[dwo)— \En=q]§E[d(Eg) G=p — L E[r)g,=7].

T
r'-\‘1 (n)
Acccrding to the above inequality and Condition 1,

E[z|&,= U]{F[d(fj)]k (n)=ho(ndh, (n).

Let hin)=ho(ndh (n). We arrive at

hn)

Elr|&,=X]=k(a).
where 2(n) is a polynomial of n.
2.2 Applieation in fully deceptive problem
Now we apply the above results to a genetic algorithm with multiple structures for solving the fully deceptive

prablem ™.

The derail description of the prablem and algerithm is referred to Refl. [12]. here is the algarithm;

(1) Recoding: for any individual = (s,...5,7, the new code of x is 2=(x—1) mod (n}, where its fitness is
S{z)=F(x). Then we form a new population state space.

(2) Execute the following procedure on the new siate space.

¢3) Initialisation: choose 2N individuals as the initial population &;, let time 2=20.

{4) Crossover: using one point crossover, generate an intermediate population, denote it by &4+ where the
subscript £+ represents the crossover at time k.

(5) Selection A select 2N individuals with the highest fitness from the population & and £, and form an
intermediate population, denote it by £.4y/.

(6) Mutation, let == {x,...5.) be any individual in & 4. choose ope hit in = randamly, let it flip. Fach
individual mutates in this way, then generate an intermediate population, denate it by i1, where the subscript
£+ M represents the mutation at time £.

{7) Selection B: select 2N individuals with the highest fitness from the population &, and &, .., and form
the next generation population. denoted by &,,.,.

(8) Increase time step & by 1: 2<%+, and return to Step 4.

In the new coding structure. the optimal solution is (1...1). Define the distance function d(x) as

n

d(1)=>_.l:|s.—1|, (3
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which represents the distance between x and the optimal point. It is ebvious that the smeller the distance is, the
higher the fitness of individual is.

Theorem 2. For any population % with d{#)>>0, the average computation time E[v] satisfies

Elr|é=n]<hn)
where k(n) is a polynomial of n.
Proof.  According 1o Theorer 1, we should venify {d(£). £=0,1,...} to satisty Conditions 1 and 2,
From (3} and (2), we know for any population 7.
d()sin.
Then {d(£); £=0,1,.. .} satisfies Condition 1.

At time 220, assume d(£)7>0, which means the population Jduesn’ include an optimal individaal yer. Let's
investigate the effect of crossover on the drift. After the crossover. one of the following three events will heppen:
) evenr [1d (&, )=<ld (80 ). a2) event THd oo+ dE0 ) and (ad) event T{d (5, ) > d (50 ).

First we prove cvent (al) cannot happen. Let 7 and o, be two individuals in &, yyand 3; their cffspring after
crossover, then

d{y 1 Hd iy ) =d i,y Hd ).
This means tha: the increase of one individual®s drift lead to the decrease of another individual’s drift. Then event
(21} cannot happen.

According to Selection A, we nave d (&, 5, )=d (& 2snd (6.

In mutation, one of the following three cvents may happen subsequently: (bl) event T (&g )~<Cd (&1l )y
(bZY event F{d {6 a) e (&5}, and (b3) event [{d (G ) =d (Eray2) )

Since the mutation is » simple hit-flipping . it is easy to show that the probability of event (b1 is not less than
1in Gf d(£,21222> 02, The probability of event (b3} 1s not greater than (n—1)/n. I d(&.,,,) =10, then the
population €. has included one optimal solution.

In Selection B, one of the [ullowing evenrs may mappen: (1) event T{d (&, )< d (5.0} and {cZ) event
Hd(&, )=d (& 1)}, Hevent £1d{6 ) <d{Eu 12t happens. then event (c1) happens: if event J{d (5 iz
d(é,, 122} happens, then event {c2) will follow.

Considering ali the cases discussed together, we have

ELd () —d (G d D0 S E[(d &0 > —d &I &y )0} 80+

B ) —d(ED (G 1) =1 2150
R AE DV —dENTLE, 720,48 u)
Cd E ) d G ) d Gy )} 1 (80 0]+
ELCI (&) —dEId (815022 0.d (Eivae
il 1) 1 d Gy 2= 12 )} G 20+
El(d ) —d G d (B ) =0.d (5 0=0} d(E>0Tsl—) /n.
Then we prove {d (805 £=0,1,... } satisfies Condition 2. According to Theorem 1, we know
Er &=y<hl
where £(n} is a polynomial of ». O
But this estimation is worse than the result given in Ref. [12]. So further strict drift conditions should be

stodied for obtaining tighter bounds.
3 Drift Conditions for Exponential Average Computation Time
3.1 Drift conditions

I this subsection, we investigate the drilt conditions under which EAs will take the average time exponential

© v [
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in the problem size n to find the optimal solution. Qur analysis is based on Hajek's earlier work™.

For a distance function & (), we define two first hitting times 7 and ' ;7=inf{k.d(£) =0} and ¢ =inf{k:
d(§0<d,} where 4,720 and definc ' =inf{& } = 4o, It is obvious that E[c Z=E[¢']. Theu il we want to prove
that E[z] is an exponential function of 2, we only need to prove that E[¥ ] is for some o, 0.

Condition 3. At time 220, for any population 7 with J,<Xd{(9)<Cd, . where ;220 and 4.2>0.

Efe” S04 [ & = d <Td (&)< d, [<p<<1, (4)
where p2>0 is a constant.

Condition 4. At time 2220, for any population § with () 22d,.d, >0,

Ele Y0 0 |&=n.d (80 2d, ]=lD), (5)
where D221 is a constant.

Under these two conditions, the following two theorems can be shown hy following Hajek’s work on drift
analysist'™,

Theorem 3. If Markov chain {£;: #=0,1,...} satisfies Conditions 3 znd 4. then for any initial popularion &,

: —
Ele % ¢/ >k — 1. d{(&) Tl phe 5 llf‘;De 4, o)
ot
and f’[ﬁ[(f;)ﬁdﬂ:”>k~l,d(fu)]{;{}efu(sl?kd")——11_':1)6_“‘{«_’1"). (@)]

Proef.  Inequality (8} is clearly true for k=0.
For k>0 and ' >4,
E o™ % |7 2k, d (E) J=E[ELe ™% [ ¢/ >k, d (6,3 |d (5 ].
Now
Ele 1! [ 2k, d (&) |=ELe 0 |0 20 d U 2d ] Ele %51 |2 2 b d (B0<0d, . (8)
The first term on the right-hand side of Inequality (83 is upper bounded by De % according to Ceondition 4,
and the second term is upper-bounded by ge™"%’ according to Condition 3. Using these beunds we can arrive &t
Fle et [k d (20 T pELe ™0 | 2o h— 1, d (§,) ]+ D *o.
By induction on & it is easy to show that the above inequality implies Inequality (63 for all 2220, Inequality
(7) follows from Inequality (6) by Chebyshev’s inequality. Tn ather words,
ELe™ % |0 2>k — 1 d (G ]=E[E[e ““% % |0 >h—1,dE)<d,_|d(E0]+
ELELem Y80 ~% | ¢/ b | o d (50, ] | d (D]
ZE[E[em"% %' ¢ >k 1,d(&)<id, ]| di&,)]
Ze' PUAE Y <dy |0k — 1.d (ED).
Hence
PldGosdi| 2k —1.d G Ele 5 9|0 >0—1,d () 1.
Then from the inequality (6) we have
P(d(E<d, |d(§)d, )ép*r”‘%"-'fa‘ + %Im*"’r"»’, d
Theorem 4. Assume Conditions 3 and 4 hold. If (&322d,, D221 and p<<1, then there exist some &3>0 and
8.0 such that
FL G zd, )0t % {9
Proaf.  Because d (&) 22d,, we have
efgd=dyiom —td, oy

€ e e

Since 12221 and p<C1, we can obtain

&
Iﬂkf)—ul(foy d',’;gllﬂ '[)eﬂ‘u‘u “'h)_
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According 10 Ineguality (7) and the above inequality,

Pladi&ysid, | v >k —1,d08 )] D™ 4

1
“T—p
Assume P’ <<+ |d(§,))=1. By using the fact that P{r' = & |d(£)) =P d EoKd | >k —1.4(5)), we

have
B

= . —
P ldig )y =1— ,\_I,Pu' :;‘!d(sm}max( 0,14 D—‘H—_P—’] :
e
Therefore
! . [ Gl ) -
B (48]~ 2aPid =1 d e = lmax( 01— P L,

g e 1—g6 X BD

Let 51*142%8 and ;=1 then
E[c (&) 2d. 28 %2 %)

and then E[7|d(,)22d, |2=28,6" "%, .

1.2 Application in fully deceptive problem

This subsection will discuss anather genetic algorithm given in Ref. [12] for fully decentive problem. The
slgorithm is.

(1) Initialisation : choose 2V iadividuals as the initiz] population &, let time step £=10.

(2) Crassover ; using one-peint crossover, generate an intermediate populetion, and denote it by $pc.

(3) Mutation; let & be an individual in &.c» then each bit in x flip witk probability # (where 0<Zp<le “*°,
¢1s a small positive). Each individnal will mutate in the same way, then generate an intermediate population, and
denote it by &y .

(1) Selection; select 2N individuals with the highest fitness from the population £, and £,4, and form the
next generation population. dencte it by &, ).

(5) Increase time step £ by L:b=-k+ 1, and return to Step 2.

Define the distance function by

Ao =| i}x,*l’)l.
M
If two individuals ) and x, satisfies d(x > =d () 2> 0, then the fitness of 1z is higher than that of 1,718
Define r=min{k;d(£,3=0}, let £, =3n/4, d,=51/8 and define &' =min{k;d(§)sds ).
Theorem 5. For Markov chain {£,:6=0.1,... }, if 4(£02d,+ then there are 8,20 and &, >0
ELT |di&) 2d, )=0exp(8m)
for enough large n.

Proof.  According to Theorem 4, it is needed to verify that Cenditions 3 and 4 hold.

Let’s verify Condition 3 first. Assume o, s5d{5,)<7d, at time b.

After crossover, three events may happen: (al) event [ {d (&) <<d (&)}, (a2) event {4 ) =d (&) ] or
(a3) event [{d(& o) >d (£}, Like the analysis in Theorem 2, event (a3) pever happens. After crossover, we
have d($4 0320 /8 since d{§023n/8.

After mutation, two events may happen: (b1} event J{d (£ 3 =10} or (b2} event f{d ({4 2)7=0}, where the
grobability of eveat (L1) is nui greater than p**, and thar of event (b2} is not less than { — " Furthermore, let
¥ be the offspring of z after mutation, then the probability of event [id (31 = 0ld ()20} is pf?(1— pirm 9
Then

FOPI =01 () >0 =™ pE (L= p) O O,

Here we use assumption p<e” %% where 2> 0.

© v [

Bl RIS hitp:/ www. jos. org. cn



1782 Jowrnal of Software FAFFIH 2001,12012)

Now let’s investigate the effect of sclection on the drift, Siuce the selection is a (ZN + 2N elite strategy., then
there will be iwo possible =vents: (el if event J{d (&, u) =0} heppens, then event {d (e ) =01 fallows: (22} if
event f{d (& ) =0} happens, then event {d (&, ) >d (&)} fellaws.

Summarizing ¢!l the above events, we have

Ele Yt A8 | JED A d=Ele 4 0 a8 (B (< d (8D e Eegag) — 00 d (81 ) =0) [ (&0 A
Ele 1) SO0 T (3@ 6D v d ) 0, (8a V(6D [ dCED) > dh ]+
Ele™ W 0 0 1 By D =d (&) d Gy =0d (5 Y= 01 (20> d0 ] F
Ele Wtha a0 TG (8, ) — {8 v (i) 2 0add (841 ) — (&0} |80 2]
ST #) fe,

Since hm Oe ) +expl—- 1) =exp(—13<1, then for erough large . there is a positive p<1;
Ntk E

Ele “n @9 q (€ >d, < p].
This means {£.:£=0,1,...} satisfies Condition 3.

Nex: we prove Condition 4 holds. Assume d(£,) 2d, at time 4.

After crossover, one of the two event will happens, (A1) event T4 (&, 00 <"d (£} and event (AD)
HAd(Sepe)=d(E) ], After crassovers o (& ¢ 122u/4 since d (5 )223n/4.

After mutation. one of two events will happens: (B1) event 7{di%  »)=0) and (B2} svent J-d (&, )0},
where the probubility of event (B1) is nou greater than »*, and that of (B2) is not less than 1— g%, Let y be the
oftspring af « after muration, like the previous snalysis, we have ¢ P(d () =0]d () 3010 e ™).

Let’s consider the effect of selection on the drift: (C1) il event T{d (£, 542=10} happens, then event {d(&,)
=0} follows: (C2) if event I{d (&, )0 happens. then event {of (£,_ )24 (&)} follows.

Summatising all the ahove events, we have

KoM 0 o018 d )= ELe™ e O M [ (B o) <0d ) vl e d = 00 d (G 3= 00 | e ]+

Ele @8y 107 90 g0 (V=T d (5o d (B 4 ) 0,4 (B D mdi8) V| d B I dy )+
Ele ) 3O N8 oy =d($6),d (&) 1) =0,d (5,0 ) =0 [d(ED > d 1+
Ele W 0 iy o) = d (50) od (B s 200 (B Dl LEY d (8 > 4]

(e Y5

[.et D=3, then Conditions 4 holds.
From Theorem 4 and the fact d.—d,— 3n/4—5n/8=n/8, we have
Elc|d(E ) =d. 2R d(E02d, )28,

where & and 8, are positive constants. O
4 Conclusions and Further Work

In this paper we have introduced drift analysis into analysing the average time complexity of EAs. Drift
analysis is a useful technique for estimating the bounds of EA's average computation time. [t does not estimate the
first hitting time directly. but estimate the drift, which is easier 10 imp'lement in some case.

Using dvift analysis, we have shown z couple of important theorems. Theorem 1 gives scme generzal
conditions under which an EA can solve a problem in polynamis] time on average. Theorem 4 gives some general
conditicns under which an EA needs au least expanential computation time on averags to solve a problem.

In the paper, we have also applied these theorems 1¢ {ully deceptive prohlem and obrained similar results on
time bound of FAs as in paper 2L

The futnre work of this study includes ; to discuss more EAs for other combinatorial aptimisation problems by
drift analysis; to study more swrict drift conditions in order to abtaiu ughter upper-bounds of the average

compitation rime.
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