Abstract:The utilization range of Internet of Things (IoT) devices is expanding. Model checking is an effective approach to improve the reliability and security of such devices. However, the commonly adopted model checking methods cannot well describe the cross-space movement and communication behavior common in such devices. To this end, this study proposes a modeling and verification method for the mobile and communication behavior of IoT devices to verify their spatio-temporal properties. Additionally, push/pull action and global communication mechanism are integrated into ambient calculus to propose the ambient calculus with global communication (ACGC) and provide a model checking algorithm for ACGC against the ambient logic. Then, the modeling language for mobility and communication (MLMC) is put forward to describe mobile and communication behavior of IoT devices. Additionally, a method to convert the MLMC-based description into an ACGC model is given. Furthermore, a model checking tool ACGCCk is implemented to verify whether the properties of IoT devices are satisfied. Meanwhile, some optimizations are conducted to accelerate the checking. Finally, the effectiveness of the proposed method is demonstrated by case study and experimental analysis.