Deriving Object-oriented Metric Thresholds: Research Problems, Progress, and Challenges
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Object-oriented software metrics are important for understanding and guaranting the quality of object-oriented software. By comparing object-oriented software metrics with their thresholds, it could be simply and intuitively evaluated whether there is a bug. The methods to deriving metrics thresholds mainly include unsupervised learning methods based on the distribution of metric data and supervised learning methods based on the relationship between the metrics and defect-proneness. The two types of methods have their own advantages and disadvantages: unsupervised methods do not require label information to derive thresholds and are easy to implement, but the resulting thresholds often have a low performance in defect prediction; supervised methods improve the defect prediction performance by machine learning algorithms, but they need label information to derive the thresholds, which is not easy to obtain, and the linking technology between metrics and defect-proneness is complex. In recent years, researchers of the two types of methods have continued to explore and made a great progress. At the same time, it is still challenging to derive the thresholds of object-oriented software metrics. This paper presents the systematic survey on the recent research achievements in deriving metric thresholds. First, the research problem is introduced in object-oriented software metric threshold derivation. Then, the current main research work is described in detail from two aspects: unsupervised and supervised learning methods. After that, the related techniques are discussed. Finally, the opportunities and challenges are summarized in this field and the research directions in the future are outlined.

    Reference
    Related
    Cited by
Get Citation

梅元清,郭肇强,周慧聪,李言辉,陈林,卢红敏,周毓明.面向对象软件度量阈值的确定方法: 问题、进展与挑战.软件学报,2023,34(1):50-102

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 28,2021
  • Revised:June 06,2021
  • Adopted:
  • Online: November 24,2021
  • Published: January 06,2023
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063