面向开放世界持续学习的任务敏感提示驱动的混合专家模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62476228)


Task-aware Prompt-guided Mixture-of-experts for Open-world Continual Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    开放世界持续学习旨在模拟现实环境中任务不断演化、类别动态变化且遇到未经训练的未知样本的情景.一个良好的开放世界持续学习模型不仅需要在学习新任务的同时保持对已学任务的记忆,还需具备识别未知类别的能力,进而实现持续且鲁棒的知识积累与泛化.然而,现有持续学习方法普遍建立在封闭世界假设之上,无法有效应对开放类别带来的类别不确定性与任务间干扰,尤其在知识的稳定性与知识可塑性之间的权衡上表现出明显不足.因此,本文在开放世界持续学习问题的形式化定义基础上,提出了一种任务敏感提示驱动的混合专家模型(TP-MoE),以实现对任务语义的动态建模与专家模块的高效调度,从而帮助模型进行知识传输和知识更新.具体而言,TP-MoE引入了一种即插即用的任务提示聚合机制并改进了门限机制用以专家网络路由,在任务增量过程中持续融合历史与当前任务知识;同时结合一种自适应开放边界阈值策略,可根据新旧知识的迁移动态调整开放类别的判别边界,从而提升开放类别检测能力与已知类别分类准确性.实验结果表明,TP-MoE在Split-CIFAR100和Open-CORe50基准数据集上对各类指标的测试均取得领先性能,展现出良好的稳健性与泛化性,开放世界持续学习任务中的知识建模与任务调度提供了一种可扩展、可迁移的创新框架.

    Abstract:

    Open-World Continual Learning (OWCL) aims to simulate real-world scenarios where tasks evolve over time, category distributions shift dynamically, and the model encounters previously unseen (unknown) samples. The learning system is expected not only to retain knowledge of previously learned tasks while acquiring new ones, but also to accurately identify unknown categories, thereby achieving continuous and robust knowledge accumulation and generalization. However, most existing continual learning approaches are built upon the closed-world assumption and struggle to cope with the uncertainty brought by open categories and inter-task interference. In particular, they exhibit clear limitations in balancing knowledge stability and plasticity. To address these challenges, this paper formalizes the OWCL problem and proposes a Task-aware Prompt-driven Mixture-of-Experts model (TP-MoE) that dynamically models task semantics and efficiently routes expert modules to support knowledge transfer and continual knowledge update. Specifically, TP-MoE incorporates a plug-and-play prompt aggregation mechanism and improves the expert gating strategy for better routing based on task semantics. It also introduces an adaptive open-set thresholding strategy, which dynamically adjusts decision boundaries based on knowledge evolution, enhancing both open-category detection and known-category classification. Experimental results on two public benchmarks demonstrate that TP-MoE consistently outperforms existing methods across various metrics, exhibiting superior robustness and generalization. This work provides a scalable and transferable framework for knowledge modeling and task scheduling in open-world continual learning.

    参考文献
    相似文献
    引证文献
引用本文

李昱洁,吴晗,孟丹,李天瑞,杨新.面向开放世界持续学习的任务敏感提示驱动的混合专家模型.软件学报,2026,37(4):0

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-12
  • 最后修改日期:2025-08-15
  • 录用日期:
  • 在线发布日期: 2025-09-02
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号