基于高质量样本选择的跨领域方面级情感分析方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(62376143,62473241,61906110)、山西省高等学校青年学术带头人项目(2024Q018)、山西省基础研究计划项目(202303021211139).


Cross-domain Aspect-level Sentiment Analysis Based on High-quality Sample Selection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    跨领域方面级情感分析利用源领域的已标注样本来帮助训练目标领域上的方面级情感分析任务,但并非所有源领域样本均适合进行迁移训练,部分样本会对迁移模型训练产生负迁移效应,需要进行样本筛选工作.现有的跨领域实例迁移方法所考虑的迁移依据比较片面,忽略了样本间的协同作用,影响力跨领域泛化性能.为了解决方面级情感分析任务中的特定领域训练样本匮乏与跨领域迁移中的样本筛选问题,本文以多领域情感分析的为开放环境,结合高可信机器学习理论及建模中的领域适应方法,提出了一种基于高质量样本选择的跨领域方面级情感分析方法.首先,该方法分别设计了域间及域内高质量样本选择指标,依次对源领域数据进行领域层面和样本层面的筛选,兼顾了两种样本选择粒度的优势.其次,全面地设计了源领域与目标领域间相似性的衡量指标,并通过图神经网络进行高效计算.最后,将多源领域迁移的场景纳入跨领域ABSA的讨论范围中,设计了域间联合适应性分数,通过平衡领域特征的重合性与差异性来选择领域间协同性高的多源领域组合.在涵盖六个领域的基准数据集上设计了跨领域迁移任务,并在方面级情感分析的三种子任务上进行了实验来验证所提出方法的有效性.

    Abstract:

    Cross-domain aspect-level sentiment analysis (ABSA) uses annotated samples from the source domain to help train aspect-level sentiment analysis tasks on the target domain. However, not all samples from the source domain are suitable for transfer training, and some samples may have negative migration effects on the training of the migration model, which requires sample screening. Existing cross-domain instance transfer methods consider a one-sided migration basis, ignoring the synergistic effect between samples and affecting the cross-domain generalisation performance. In order to solve the problems of lack of domain-specific training samples and sample screening in cross-domain transfer in ABSA tasks, this paper proposes a cross-domain ABSA method based on high-quality sample selection by combining high-reliability machine learning theories and domain adaptation methods in modelling with the open environment of multidomain sentiment analysis. Firstly, the method designs inter-domain and intra-domain high-quality sample selection metrics to filter the source domain data at the domain level and the sample level in turn, which takes into account the advantages of the two sample selection granularities. Secondly, we comprehensively design the similarity metrics between source and target domains, and efficiently calculate them through graph neural network. Finally, the scenarios of multi-source domain migration are included in the discussion of cross-domain ABSA, and the inter-domain joint adaptability scores are designed to select the multi-source domain combinations with high inter-domain synergies by balancing the overlap and difference of domain features. A cross-domain transfer task is designed on a benchmark dataset covering six domains, and experiments are conducted on three sub-tasks of aspect-level sentiment analysis to validate the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

赵传君,孙绪壮,康璐,李旸,王素格,李德玉.基于高质量样本选择的跨领域方面级情感分析方法.软件学报,2026,37(4):0

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-09
  • 最后修改日期:2025-08-15
  • 录用日期:
  • 在线发布日期: 2025-09-02
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号