用于二值神经网络的加宽和收缩机制
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP301

基金项目:

国家自然科学基金(62332015)


Widening and Squeezing Mechanism for Binary Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    二值神经网络(binary neural network, BNN)因其较少的计算和存储开销而对业界非常有吸引力, 但其准确率仍然比全精度参数的网络差. 大多数现有方法旨在通过利用更有效的训练技术来提高二值神经网络的性能. 然而, 通过实验发现量化后特征的表示能力远弱于全精度的特征. 因此, 提出一种加宽和收缩机制来构建高精度而紧凑的二值神经网络. 首先, 通过将原始全精度网络中的特征投影到高维量化特征来解决量化特征表示能力弱的问题. 同时, 冗余的量化特征将被消除, 以避免某些特征维度的过度增长. 进而建立一个紧凑但具有足够表示能力的量化神经网络. 基准数据集上的实验结果表明, 该方法能够以更少的参数量和计算量建立高精度二值神经网络, 其准确率与全精度基线模型几乎相同, 例如, 二值量化的ResNet-18 在ImageNet数据集上达到了70%的准确率.

    Abstract:

    Binary neural networks (BNNs) are highly appealing to the industry due to their significantly reduced computation and storage requirements. However, their accuracy still lags behind that of networks with full-precision parameters. Most existing methods focus on improving the performance of BNNs through advanced training techniques. Empirical findings reveal that the representation capability of quantized features is considerably weaker than that of full-precision features. To address this limitation, a widening and squeezing mechanism is proposed to construct high-accuracy yet compact BNNs. Specifically, features from the original full-precision networks are projected into high-dimensional quantized features to mitigate the representation gap. Meanwhile, redundant quantized features are pruned to prevent the over growth of feature dimensions. As a result, a compact yet sufficiently expressive quantized neural network is constructed. Experimental results on benchmark datasets demonstrate that the proposed method achieves high-accuracy BNNs with significantly fewer parameters and computations while delivering performance comparable to full-precision baseline models. For instance, the binary ResNet-18 achieves a top-1 accuracy of 70% on the ImageNet dataset.

    参考文献
    相似文献
    引证文献
引用本文

韩凯,刘传建,吴恩华.用于二值神经网络的加宽和收缩机制.软件学报,2025,36(10):4880-4892

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-09
  • 最后修改日期:2024-06-17
  • 录用日期:
  • 在线发布日期: 2025-07-17
  • 出版日期: 2025-10-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号