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Abstract: The latest advancements in intelligent driving technology are primarily reflected in the environmental perception layer, where
sensor data fusion is critical for enhancing system performance. Although point cloud data provides accurate 3D spatial descriptions, it
suffers from unorderedness and sparsity. Image data, with its regular and dense distribution, can compensate for the limitations of single-
modality detection when fused with point clouds. However, existing fusion algorithms face challenges such as limited semantic information
and insufficient modal interaction, leaving room for improvement in high-precision multi-modal 3D object detection. To address this issue,
this study proposes an innovative multi-sensor fusion method: generating pseudo-point clouds via depth completion from RGB images and
combining them with real point clouds to identify regions of interest. It introduces three key improvements: (1) deformable attention-based
multi-layer feature extraction that adaptively expands the receptive field to target regions; (2) 2D sparse convolution for efficient pseudo-

point cloud feature extraction leveraging their regular distribution in the image domain; and (3) a two-stage feedback mechanism
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employing multi-modal cross-attention at the feature level to solve data alignment issues and an efficient fusion strategy at the decision
level for interactive training across different stages. These innovations effectively resolve the trade-off between pseudo-point cloud
accuracy and computational load while significantly enhancing both feature extraction efficiency and detection accuracy. Experimental
results on the KITTI dataset demonstrate the superior performance of the proposed method in 3D traffic object detection, validating its
effectiveness and offering a new approach for multi-modal fusion in autonomous driving environmental perception.

Key words: 3D object detection; multi-modal fusion; attention mechanism; point cloud processing; traffic scenario
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F SRl E J7 5 U — SR A RIS AR AE B S SR Jyitt, FRATHR i — R B BOS AR & 7535, 27 A RN 2
T RS RHER G 5 2RSS RS

FERFIERS & 77 1, A0S R IS R LS R A% 3R 1S fi s P Rol R¥ER ARSI N (BN, G,G,G,C)
k&, Hrh B AHEE K/, N A Rol #&, G EEA Rol HIMII% i %L, C WM s E K. o T 0 mi = Hicdls,
FHIEAZ )0 (M,C + 1) IR, Jeh MOy Rol WD i e (Bt AR L), C R AEYESE, BUAMK“1 i 5
G5 LA (i S AL L

A PREA RIS AIRFAEGE— RS A, DA AR . X T O U R, LR Rol 173931211 (GXG*G)
PR, XA A AR D 1 2 R AL IS P i KA 5, 388 s B e #0004 s AL

ET X3, FE Rz BIPAS RHERTR A f,, Dh i = BORFIERR IR f, . RS AR & A R AR IR 3% B RFAE, 34T
KBS B MGT7E. EZITE, SRS MR IEEE BT R T 8 5y — B I 1 &, FERHERE DS B E
I3 IR AR 51— SR SR B B R 5 B R IEREAT PHE, TE B & IR SR E £, 12BN 8 s, 5
FLRPHERLE, TATHI T4 Rd b 1 o 3 22 S SO A SR [

® ik
Ot

Rol t sl =Rk
A

Rol fil &L
1

Rol #AZFHIE
e

B8 RS X R A g 2 ]
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PRFFAERRA A, 52 CaSA J7ikh )5 il & 5% 5 Box Voting 5% R &, BAIH H—Fh & e B 288 5
il G A ——Z B Box Voting 5%, 1277 1 1 il & AN ) BEASRFAE A T 45 SR A il dme A 45 2R, Herh s
RN 45 SR 1) £ SRR FRT SR (RSB (B S ¥k, Bk LR
box,, + box;, + box;
— ©®
Horh, box!, FoRH 1 AMRLIHE 19 O s 2 RRAE TINS5 R, 25 H bR EAR B KL FHE S B MU box! TR FRFAE
FITRINEE R boxi, TRl A RS A A TR 45 24

4 ZWHERGHH

box' =

4.1 SLEHIEE

(1) KITTI 44

KITTI 48 42 /2 5 6 25 B AUk A o P I B0 48, JLER 0L 785 B ARAS I . B RRERER . 18 ¥l IRFEAMA
TR FE A 115 77 TH AT 45 BOARZE L B VA 77 5, R F 85 8RR 2 A G AL AT 45 KITTI B E P a1
Z WA AIN LR R 0 R AR FE MR, DA R B0 R 18 SRR I S S BR A & A s Z Al b e 240, B 9 R
T KITTI 04 RAE TR A bR 2 DL B 35 AN IS 1] 1A A7 B 06 R BB SR K SRR 1 5t - BRI T T %, 37 55
CLJ & FIE . B0 LA SEI 18] 1 7 AT 41 2, LA 7481 Ml SR B0 A 7581 WU EHE. VI ZRE0 0 & bs
2, MREHE A, T8 T 45 B4R A8 2B U7 RS54 A IR A3 K Fa b 4

Velodyne HDL-64E laserscanner

[ All heights wrt. road surface l

Point gray flea 2 )
/i Cd as A =
video cameras All camera heights: 1.65 m
Y b
Jam
Wheelxis ' i B Toowm E

(height$0.30'm) Cam-to-CamRect Velodyne laserscanner
i 0sam & Camrec . (eight 173 m) $0.05m
H 2
| “to- ge G ‘——~ —

1.60 m i o | Cam 0 (gray) < =Dz ) -ereee IMU-t0-Velo  ssfessssss
0.06 m§ I " P z i
H Cam 2 (color) T g H bso
i Velo-to-Cam GPS/IMU 32
1 1.68 m s (height: 0.93 m)
| | 5
0.80 m ! 0.81m 0.48 m
0.27m
-

} )
v 1

271m

K9 KITTI Hidide fk i A b BL SR 7 Bk 3%

£ H AR 55 77 T, KITTI 3246 1 — 4 PGB8 K30 TR AR T AN = 2 il 22 B 1)1 SRR . e, 430
FHEAL S HARE eGP IO AL E DU RS S E R, =4l R T a8 HinfE =4k m P IO E DL R
A, R EAE HRITIE A . BEAL, KITTI SR 480 H b2 5 4y, DLIR Sl 2 S AT bR 7RVl IS 7R
h, BRAE HFR B RST, BOTRE A AESE, K H AR iy b s IRAEIR 3 FPERE, IF 20 )i AN R R I
PR RL. fR 28, BT Mt o DA S PR AR DIDRS B HEAT HE Y R AE = RS IIAES5 v, BR 1 X =410 FAE (A
TURS BEHEAT VAl A, 30 20T SRR EIAL S ARG HE AT AL 17 A 1 [T VDR LS AT PP A

(2) nuScenes H 54

nuScenes KHEHEIE — AN 1 [ 20725 BRATUSR) KU FG 22 TF Kl 8. 12 50l 5 1437 53R BB 3B - WX
MNERIRZ . SZEIRE R, JEEE 1000 DM@ E, BEMARNK Y 20 s X8R 2RO Pk,
T 2R BT Y BRI IEAR I AL KRG L. nuScenes Hdn 4 104 & VRIS 28 MBI FE & 4R 6 1T R
FOTREINL, LSOOI PR 5 b A3 5 AT e & e A AR Pk, AT S 2 4 k.

nuScenes ARSI E L) 15 h (9B BEE, B AL OB, MHH A PR3 5 O T
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H ARSI 700, B R e nl g n 7B EWA BAx (W EATE) g, T X b, i 5N F 3k 1
1000 MR 20 s fI3gst, FE0 H#EAT T ARG A AN ARV

TEAR IR AR B J7 11, nuScenes HIRER % 7 6 MGk (camera), 73 AL T ZEMIIHT /T (front). A HIJT (front
right). 72777 (front left). J577 (back). £ /577 (back right) FI/ 5 77 (back left). b4, ZETH (top) 42245 T — NS0
ik (LiDAR), LK 5 AN KK IS, 296 T I 77 (front) ARG J7 (front right). A FTJT (front left). A5 77
(back right) F1/c J5 /5 (back left). 29 T iR 2 A& B33 H9R 42 1w i &, Wt AL B AE X 19 A% IR 25 1) 415 (extrinsics)
FIPZ: (intrinsics) AT T ASHAIRSHE. IR0 =A% 1RV R FE ARl & 2 4% A% I BSR4 1 vl St S5,
4.2 SLEIFMNIERR

TE =4k H AR AT 25, KITTI SR X T = 40 FHE PPN 18 A5 0 P 34048 & (average precision, AP), ZFaHx
WG BLLE AN ) 9 43 0] 26 BB T 1T 3508 BE AR R B X AT AR A WAL, 76 KITTI BB 4, AN RIZE5HIH) B b5 ToU
B B B AR, SFARBUE R B R, FlinyE 442, H IoU BB BEE N 0.7, 5FFARERE/N H b, 5liniT A2,
H ToU BMEW I E M 0.5. 76 V- EFE BE A01H 57 1, KITTI % 40 SRR R A Bl 2R RAE TP SRR B T =456
DURE BE 2 A, KITTI AR SRR 74 = 40 DUAE 352 21 S5 Ml PR A RO IDAS B2 15, LR 1) [ U PR G P 2.
4.3 SLIRYS

TESIGH, BATH 2 I R e N 0.001, #EE K/ E N 6, HFEHA RTX 3090 GPU _EJTFE 40 MR AT
ISR T AR, 230 A (0] 28y (R I 5 SR P T DR A 13 22 . AR OB 0 B FE B (G BB B M B
F L E RO B A 0.5. T At T 2 508 4 7 OpenPCDet™ i (11 BRI 15 B A,
4.4 MFLESCIGER

TEARFTH, FRAT K TR 52 5 I 10 Je ik 2 BEAS =4k H AR I R VA EAT B, DAIRIE LG 20 . FRATTEATTH
KITTI #Ha £ A0 nuScenes Fuda4E IS UEFTEE v, 8230 H H A &0k,

W 1 PR, FriRJ7VELE KITTLINASE bt se Ot T B B4 7735, Hoh, Graph-Vol /& Graph R-CNN i@ F HE
28 5 SECOND (Voxel-based RPN) A #5175 fil A BB 4l & (M 2 AR k. 528 uE 777 SFD AHEL, AT LR #
PR T A SR R AR X S A ARG . SR, X T TR B AR, AR IS AR R B X T RE R PR TR B AR
KB R = S EERRMAGS AR P R RAFEE 2, IS T R iPERE.

F 1 AFEESHAACR M VEE KITTI RS E R0 Hgs 3 (%)
1325 (10U=0.7)

ik i 5 A mAP
ContFuse™ 83.68 68.78 61.67 71.38
MV3DFH 74.97 63.63 54.00 64.20
AVODP! 83.07 71.76 65.73 73.52
F-PointNet™! 82.19 69.79 60.59 70.86
F-ConvNet™*” 85.88 76.51 68.08 76.82
MMF? 88.40 77.43 70.22 78.68
3D-CVF*! 89.20 80.05 73.11 80.79
EPNet™ 89.81 79.28 74.59 81.23
CLOCs™! 88.94 80.67 77.15 82.25
MSF-MC™! 89.63 80.06 75.83 81.84
Focals Conv?™ 90.55 82.28 77.59 83.47
VPFNet™ 91.02 83.21 78.20 84.14
Graph-VoI®” 91.89 83.27 77.78 84.31
EPFNet++34 91.37 81.96 76.71 83.35

MLF-DET™ 91.18 82.89 77.89 83.99
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R AESHARRME 3 KITTI RS LRI g R (%)(%5)
IRZE (10U=0.7)

I . I A mAP
PA3DNet"” 90.49 82.57 77.88 83.64
ACF-Net™™ 90.80 84.67 80.14 85.20
URFormer™" 89.64 83.40 78.62 83.89

SFD (i)™ 91.73 84.76 77.92 84.80
AL T5 90.98 85.07 80.16 85.40
7T+ -0.75 +0.31 +2.24 +0.6

SO, AH TR — P AE ARSI EZ AN TT AT T IRIT, R 2 JEoR AT SFD J7 3 KA I 28 Rox
bt MR AT LU H, AR ST i BRSNS A 45N S50 (ROAS TURS 52 _E 38047 SR T, R il 72 X3 424" 3 F) PR A 28 )
FUbR, $RTHIE P SR, X th— @ R B R W AW FE I 5 VA A R

2 ATPAAE KITTI B4 B 5474 AT AR R (%)

ik YT TA
] F. g PRI 7 (LS g Gk
SFD 89.56 72.83 63.29 72.41 65.39 58.39
AT 90.35 73.67 65.84 72.68 66.87 60.19
et +0.79 +0.84 +1.55 +0.27 +1.48 +1.80

Nt B RAEA SCIVE R e gt PEAN & F L, AW 7T nuScenes B4R S HEAT T4 LL Sz, &5 Rk 3 fios
(PR TR e R R, | RO TR IR ). N 3 T AT HH, A SCTTVEAE nuScenes Hdfi 48 R IL0 th
. JEHRAE PR BE (mAP) Al nuScenes £l 73 % (NDS) X IR F b5 b, A SOOI TR U A R . IX R HIFR
ATHIRE R AL AR BE nuScenes $d £ 1R 283 5N 22 B H BRI, B4 B (RS BE AN (5 R 1k IS 45 Rt — AW, A
SCOTEAMUAE KITTI #f 4 LR B 5, 76 58 BB nuScenes %4l 56 bt B OR F7 KPR, 7870 B 1 L
R HRZ A RE A S B LT 7 7.

23 A5 TR nuScenes B ESE F 45 BT

ik mAP?T (%) NDS? (%) mATE| mASE| mAOE| mAVE]| mAAE|
BEVDet 422 482 0.529 0.236 0.396 0.979 0.152
BEVFormer 445 53.5 0.582 0.256 0.375 0.378 0.129
Far3D 51.0 59.4 0.551 0.258 0.372 0.238 0.195
VoxelNeXt 60.5 66.7 0.301 0.252 0.405 0.216 0.185
CenterPoint 60.3 67.3 0.262 0.239 0.361 0.288 0.136
TransFusion 64.5 69.6 0.269 0.249 0.292 0.266 0.189
SparseFusion 70.4 72.8 0.273 0.258 0.342 0.277 0.138
CMT 70.3 72.9 0.294 0.260 0.323 0.271 0.131
FocalFormer3D 71.6 73.9 0.257 0.248 0.334 0.232 0.134
EVT 72.1 74.6 0.250 0.245 0.311 0.201 0.123
AT 73.1 74.8 0.237 0.231 0.287 0.251 0.128

4.5 JHMKIELER

AT O AR AR HIT RIRATE I 5 087 B sga g R T KITTI 3 UESE 3R, ) KITTI
DR A R PP FE R, JFHKHE Recall 40 FRiEREAT 15T
4.5.1  AFEBCHALF R RCR

AFTHLIL TR PR BRI 2% 4 TP SEIRES SRR B, W ASTEE R OB i 7 AR IR RE. B A
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SEUEEREA IR AR 5 T 1.75%, WHEREA IO HER R B2 0 1O 5%, W& $2T T AER A5 00T IR et
FIN 5 2 Bt A T A AR O HE R R B2 e 17 5% LA b, I ELAE v 48 i FEE A DRUE R A 5 M B2 5K, DR O A By
TR R 2 B (AR B ) R

R4 BBHOHERERE R (%)

WAREA fE7 Hp i PR 4

Voxel R-CNN® 89.41 84.52 78.93
+A] AR R AR 89.55 86.27 83.83
+ AR A BRI 94.69 87.48 85.64
+ X EL AR 95.86 88.71 86.28

452 WARTLER S BUR

AIFRNIR T AL B S B RO, SRIR 45 RNk 5 fis. 45 SRR W, WS & ) RIPIER L B R 1k
Ae 6 02 SN 7E =425 (8] BEALRT A6 0 IR SRR f 2 S EUE R L2, BN A% RURRAIE B AR 72 X A o BB B 20
i, TEVIGRATHA, TR TR B A A 2 B0 O RHAIE, AN TR IS SR 2. L Ab, B AT 78 T T 0 5 W A SR st
BRI, YRRt 18 B4R T

RS AIARIBVE R BHOS R R BE IR (%)

\ TR ] - i i
RO e mmn  RbEemm o P W
v - - - 89.41 84.52 78.93
- v - 6 87.36 83.65 76.29
- - v 6 89.37 85.31 80.74
- - v 26 89.55 86.27 83.83

4.53 Dyl RHESRIURI R

AT F Ty i SRRSO R P AHIE FE I B 70 TR RER 2, Herh BT IT T O s S I AR
AE VA RS AE SR BT 5 B AT (R 9206 3 IR AR T 08 m = R AESR B, DR, 7R LS ki = A B 1 RS AR R 5 07
I, 88— R AW TR A5 T 2 M50 SO B A Tt AT Rl & 0 T D sl IR RAAE, AT 78 2R S A
HB9Y, 73 R R B S AR R AR AR B 2 )2 UOCRAE, R S R AL L IR 2R E, B BB R e A=
YEARER. 4EPR RGB AN ZE(R Z ARKRIFAE, K5 X M/ R AIEAC B R R AIE. X TR RIFAE, AR AL T 2 51
JERFAEA G RE P 2 5 0 B A PR SR B KOG B E RE R 2. AR S v A P ) O sl S R SR U V20 — A R
BT R, LA R 6 FiR.

R 6 M m A FBIYIRRHE AL RE RIS (%)

WRASHE DT fiie g A
- - - - 89.55 86.27 783.83
v - - - 93.28 86.83 84.37
- v - 94.92 87.39 85.39
v N - - 95.34 87.69 85.75
v v 95.86 88.71 86.28
v - — N 95.55 88.24 85.86

6 P 1 ATISEIRGE RO AR D 2 R AEHEAT Bl 5 B0 45 2R SRIGZ5 R RT3, XTI (KA RE A, Dy
R FHE TR IR JZ R 2 T JZ R AL R 25 R T 7 BB R RE. 5 2 X T a7 B A, D il R AEBRA 1 3 ==
B IRF AL IR, KSR T T AR T ] SRR AS (A BE 0. IR 6 HId m] LAFE H, [ {a FH PR SRR T 2 P
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IS TH AN 2 AT IRIRABE T 1R R RHE TS R o AR AR R B0 KO TIERERIRE . Ho, K=1 RoRE
PEAE I Dy o 25 P T A 20 2 ) S A 2 (R SRR AL AR iR 2 R AL, ANHEAT . K=6 R (I BR B D i iR R
BRILH 6 /N FL S i 22 R SORFIEREAT S AR, MRS, SO 28 SRR W, ASHIT S I O (B R B 25 4R T 1 A2
R IERE, 4502 25 K=6 I, ML T AN FVRAEREEOR, o 0 B A AR AR THE 1A A 70 s, HRRH
AIRTHE 0.5 AN E > i a4, MeAb, il SLUe 45 SRIE W23, G K RO 0, BRIV RERA A 1 B, 23 S R vl
RER IS SRR RFHEALZ, IR T — 5 R AL

BEAb, A TERG 52 I 1) —4eMs AU 5 SFD H ] CPConv J7 ik A2 EL#EAH ] PointNet 5 VAL Ao S
BE HEBEIE]L TR R AN SR Ty I AT 1R 3R 7 PRSI A RER W, 5 H A PUR T I B, PointNet
JEBL BRI A I R RE AR, X B LR B T B AR L, UL PointNet K415 3 & 2% LB . B4,
2RI, BA TR I MM B RUNEERINRE L . AR MR EREMSHETT LT CPConv.

R7 DR SRHESR BT R B RS

ik [HEACD) T2 (%) IR 3E (%) FFMTHHEFRIN ] (ms) 15 5 44 (GFLOPs) ZHE (M)
PointNet 95.06 87.91 85.01 504 42.6 3.8
CPConv 95.47 88.56 85.74 98 283 52

SPConv2D 95.86 88.71 86.28 53 19.7 49

4.5.4 PR BOAAEE THERIBCR

AR RIE TR T AN S5 SRR T (5. 38 8 1 (R 45 SRR, S A% s 1) W i 5 B O B 17 S VR ) S
PHRIX I, (Rol) AL, HAEREME TS BI Rl & . fERL & J7 kb, B T HHE MR & 0 T 25 TR Rl &, (ELIX 7 2 40
DK 2 JORR B A D i Z2 T AFAE X 55 1) A T th A PR BOS AR & 07 i B I T R A 7 7.

K8 ZRLEFHIER AR B RERI R (%)

A 2 ) Pz A X FER T LS i Gk
o N — — 94.74 87.72 85.49
— RN — 94.67 86.89 84.36

\ — - 95.67 88.48 85.87

DR 2 25 - v 95.49 88.19 85.71
— — v 95.86 88.71 86.28

FEGE R UK, ACHITFE 32 B TR A5 AN R USROG 22 RGN 1 RE PO S SRIR 45 RANZ% 9 PFom. Bk
B, 3T A ROR I 25 R, O m 2 Bl i T PRSI  s Hd SE R, TR AR LA T I A DA AR B A S T
R 2 R A, I R R B A ) TR RGN 45 5, AR A DI 28 e A5 B3t — 2P 4R T

RO ZHEGRM BRI (%)

bt Dh 5 T R A A a7 5 4G P
v - - 89.55 86.27 83.83
- R - 91.33 87.02 85.31
- — v 95.27 88.12 85.37
v - v 95.39 88.48 85.46
- R v 95.42 88.53 85.46
v v v 95.86 88.71 86.28

4.6 RTINS
T FE AL TR T, RATTIEG A I B 5 Voxel R-CNN #E4T ELEL. w1 10 i, Horb o o ih FHE ks
HEHE, 43 030 FAE A S5 0 MIHE, B4 €232 RAHE SRy ok bE D SR AG AT, £ €0 s 2R N IR AG (1) L4 H bR, mT LB Y, 1%
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R Ry S T

G T R W VER G BEARFI@E S MR = A ks, AL, RSO ii 5 NG EE, A 2808 7 ek
WRAGL. LA, o Tz Ak B B ) AR, AN ST RENS HERAS X Le P A, T2 2 D 9 DU A SE X . X3 W o

H A = A S B B v AR DR e, B T 3 A R G IR A AR ).

K10 AR E 0 B AT A 45 R A

5 B 45

ATCHR T — i P RE 10 2 MRS = 4RSS R i, A RO D T B S I b 2 B R T i RS

A H AN REANRFAEAN R 7555 S5 i L. 33 5k r s AL BRRRE (A R RS AE SR B A DA B BT XU B EL S Bt ) 22
BEAS R & SRS, FATHEE T — R R =4 B AR HESE, O B 22 58 R ST BRI At 1 B BHEORSRF. It
bb, SCERWTFLR M, IUA 08 5 AR T VAR 48 P I AL B R b A2 AR W 8 ) SR BR A, e on) A H s B N 1) 5
THITEBER IR . 3T AL, AT B R W TR B R I T H AR Y AL RS AL SR IO 12, DLIERAS 5
FEAH ) = AR AL R AL BE
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