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Survey on Fuzzing Based on Large Language Model
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'(School of Software Engineering, University of Science and Technology of China, Hefei 230026, China)
*(School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China)
*(Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123, China)

Abstract: Fuzzing, as an automated software testing method, aims to detect potential security vulnerabilities, software defects, or abnormal
behaviors by inputting a large quantity of automatically generated test data into the target software system. However, traditional fuzzing
techniques are restricted by such factors as low automation level, low testing efficiency, and low code coverage, being unable to handle
modern large-scale software systems. In recent years, the rapid development of large language models has not only brought significant
breakthroughs to the field of natural language processing but also introduced new automation solutions to the field of fuzzing. Therefore,
to better enhance the effectiveness of fuzzing technology, existing works have proposed various fuzzing methods combined with large

language models, covering modules like test input generation, defect detection, and post-fuzzing. Nevertheless, the existing works lack
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systematic investigation and discussion on fuzzing techniques based on large language models. To fill the above-mentioned gaps in the
review, this study comprehensively analyzes and summarizes the current research and development status of fuzzing techniques based on
large language models. The main contents include (1) summarizing the overall process of fuzzing and the relevant technologies related to
large language models commonly used in fuzzing research; (2) discussing the limitations of deep learning based fuzzing methods before
the era of large language model (LLM); (3) analyzing the application methods of large language models in different stages of fuzzing; (4)
exploring the main challenges and possible future development directions of large language model technology in fuzzing.

Key words: large language model (LLM); fuzzing; test input generation; defect detection; post-fuzzing
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JURE TR B 2% 2] AR N AR BT VETE SR s ORIl i R e A0 Rt T T B T Bk e, (HE A 71
— BB 2 A, R TR R 2 ) (R RSR I 5  2 AT e 2 AR TG RUCERAE 25 R R 4911, T e B80S B R 4 1F 1)
R B IR B IR BT B ). 51, DeepXplore 7E A s IRy N B X REASTRELA BN, S ATTRI M RE LR T 1146 R+
()5 i, (RIS E T2 07 ik R R A AR B B IS P30, 7 e e N AT RE AT R R IR T AR
A BRI 8, BV 2 HAlA BN AR 2 A

(2) BRPEARI 5 PR A

5L, BRI E AR AT 5%, A T TS I EEARAS . — J7 T, X IS T 5 1 A 52 PR A 1) 2
1R 77, JUHIRAE N S AR AR AT RS, B — IR B S ST R A M R AR AR AR 22, I — J7 T, A R B 2 5 T A
JEAEAE TR B RS AR B, T X LB ) SR B i B 0 5 SURERT . HhAh, R T U8 B 5 S BERY ) SR e vk, R
TS Re b8 IR 23 28 M A 01, AR L o SR Rt —

HAIR, B TR L5 ST ISR R B A T-RE 7 18 S Re SR AEAE R B Itk 75 26, R BE 2 ST B 1) M R AR KA
B BB TN SR B i o AN 2 . dn S ZR B A 2 DL 5 BT A W] BE R SR A 2 2, 1580 AT BR TGk v R AR I
W ST PRI LI, TR IS 2 )RR AT B 7E TGS A 22 3 DL Py ok o e e IS .

WAk, R R BE 2 2] R Guke AR S IR T 0 B8 7734 A A B A B4, AR 4 58 55 s MZE (common weakness
enumerations, CWE)* 1> 284k 2 BRIAHRIZ> 9 10 A LT, ML 1285 TR E 20 25 T Fh, FRhEk
R AR R AR I & AR R AR Gl 5 vk 2 RN 8 28 B (5 B 5 ) U, (EL B0 P 20 T o 88 2 oJ I SR e
DT B A 208 T AN [R5l e 8 1Y T DX 31, 38 Rt 87 B o e AV T — 43 SR B2 0 70 S 1) .

[EIS, A0 T B 2 ) AE VR AR B B Ao PN S50 0 4R 2% K 22 045 B AE SRR B F J2 1, 8 3 2 L v T dn e o
HAm B2 TR TR H AT 4325, AR, VA SR AR TR SR A R AR TR A T BB K — o, B E S AAME.
I, IR T 7R 22 25 T L 1 SE B 75 sk SRIEAT, REMCK IR AR I H (144 FE 25 8, T IR RR G R An
BRI REATAT . B H A% 0 T AR 8 T2 E R B L

(3) JrF A AL ) PR

BARIRFE S 2] )7k A T USEIUN AR 7 ) B 3ME &, B B W SR b, 5 TR 2 ST IR P e 857
IS R MR AR 2. B, 1E H T3 TR 2 S RE B R i, V2 IR B S B S e (1910, CoCoNu T
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WE 2 HERIFEA), XA B2 BB A VERE.

e o ik R 3 2 D) T v R B S 774, 8 R AL 1 S AL R PRI, L, A B TU R T 1), IR 2 D) T v e
BRI EEANTAN T B RE P AT B A A R ZhRE A 1, Joiadb A7 B Rt 3%, IR KB AEDAT IR 18] R,
H I DL A DR, TR A N B3R B 2B AT N TR BVl & BN T A IERA T, A A SR AR, 0 H N TAF
it RN o)

L3 EPTIR, T IRE A ST BB I X 7 V28 o 2 ST BRI e A FIRE e SR B BORRAE, T DASEEIL E B A A AR
DK e N AR BEAS . (H 2, B IR R 5 D) VR AR B A7 AR A A R B, LB AE RO K 2 mh A AR R R R R
P, TR B 2 ST ORIk 77 5 0 Sl g G0 28 RE 7 T A 7™ AN 2. BRI, F R N BR 2RI LML i 50 0
W, I TR AT TR, £5 4 T, ASCRXTEET LLM BB a5 VA AT e 4.

4 EHT LLM BOEH

BEE LLM fif P ACRD A= s FHE R 23 A7 S54F 25 B R 77 AN BT 3 5, AR F0 N XS 2T LLM BRI 7 25 1 fif s
R BRRN.

SEEGIE B, LLM ¥ H 5 K7 5 RE A% A 280 IR IR B 5 S LE RO I i ) [ k. 5 2, LLM R AE K& 5 1R
BEHEE AT YNSRI, 8% R AT /N A 2 S R TR AR ), 3 Re 08 1R I b 22 A D030 F 90 R0 B AR AR, sk 1l
AR B R, HOK, LLM /B R EA RESHRNE S B8, B4 KmEmEe ), e Harth 3 S fA s g
SRR S AR P AE, ELZ W] DU R 1) B AR, AT DAHES BRI 55 1 2 =) A ST

5T LLM 7E NLP 4 I H 5958 KR8 7, # LLM B A -TBORT I it i R Je. el TRl ik iy ik 21
FPRBAT BLE b A H I LM 12 A, BRI A 1508 A e 2R B8E 2% 30 D vETE RSO A 1) B FH s s, A T4 A 28
LLM TEAORE X A Ui N A s w5 ARSI 0 J5 ORI Ab B3 3 /N7 T RO L3R,

4.1 LLM IEEMRIMNE R

Hal C&ERL 85I N LLM, ¥ LLM 548038 AR g5 & St M . T LLM 7EARRS AR 5 77 T 138 B PR
i, RS A AU E A F R Z W S LR, LTI W0 50 R, B8 S N A R LLM i — 28 SEE i A
1B SA R AR LGRS 2] 245, LLM fE T ZRid A2 R 22 2] 7 B n=F 5 H 2 FE AR 5, Ref8 35 m 78 77 3L
TRFTN A AR S I ZESR, A AL IR FE 27 =) R G0 AR B i A\ S B TE 28 e s, S - BOR UK g 3k 26 7
H 87 S0, A LU BRI B HA AT 55, R LLM AE s R AR B 2 iR 4, CEKRJEH T 2T
W TR TR, EGEEREIX 3 28I N\ A BT 2.

LLM 3K A A e 2 AR AR a0 18] 4 BTzR. D8 T 325 LLM AR Bl IR A8 250k, 1 98 N 0B SR B —
SRR 4R S LLM A R N FO 5 5. F I it 45 & I 2R 250 om LLMY Y, W45 Al 772 R E bR e 5
A AR R U GRS G G R G 0 T LM AR A IR\ T B S B A R, BRI R R
BT N B0 IE 230 AR B A N A TSGR a0 N B0 I A Tk AT 4 1R W AN ) TR A, 3 AR N
H L4 PREE 8, 0 N T8 UE 2% UK 4 PR F2 A5 B B RIE B3R AGAR B LLM, H5 (5 AR AR —# 40
HHES LLM A sl N
411 FETRORRIT

B LLM 3K U AR s & K OR RYJ7 =X, AT R LLM i DURs @42 55 R 70, — M2 A FAE 454
KIBERT LLM #E4T TR0 S5, 46, Alagarsamy 25 A 42 B A3Test 753, fbAT15R A B B 175 XA A Java
TS RHE S TR A I ZR0E S R, AR B A T B Y W AR R,

B 7 BB 5 ARG A AT S AR L LA BE 5T LLM #4740/, Deng 28 A\ POZEHE 8 FuzzGPT Hilid
P SR RAD BB R S LLM AT 10M. FuzzGPT FIH i R4 R AR AL A (1) APL 7R 5 iR IR DU %
ik ) ARRE  BE SRS R, 1k LLM R4 B 3[R F00, A58 B B T B AN 7 S8 R B, AT A LM 3@ SR
55 IR S 045 3 T B, JEU, LLAMAFUZZP "R AFL S236 ek 72 b (1 17 sk A B 425 LLaMA 573
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BEAT WO, 285 AR AR TR AT I kA A A ZE BN AR R, RIS D 1 ORAIE I sl A ) 2 FEAE, LLAMAFUZZ
WRI LR B T BEHLAZ RO, A3 78 2 A9 aldar .

FESZB I AL bl T LLM A2 B 0k P 9 388 6 X LA A S PR A%, Hashtroudi 56 A\ PP T — A B 246
HEZE. IZHELLAERT CodeTS AT F T Methods2Test 24 42 ™, H A B S U4 . AR GRS DL A I3
I EF3C (RA Rk WIERBUTENSA . AREN T BRI HATE NS4 EE R). 4564
PP B SCAB BT E B, LLM RE S 4 1 B0 P )Rk, AT i 4 I 8 )t i 4.

>
-_—
T -— "
Q00 IR ) W
L x 4 x
it 3
- & I E 5)1;
- O’ L K E I Ao o AN
A
= &
E ;m?mi%g
ElaRded

K4 LLM SRzl AL B — Biifs

IR AR R XS LLM @47 R A0, BRI I SRR (n) A1 B2 R FREAT IR, BRI Z Ak, 22T 5k 2
(1R R e P T BRI AT 55 R 5112, Jueon %5 N PR HI CovRL J5idk, " 38 1k Ge AR It A2 wh s A O3t
O (8 25 A R, G5 B PSR A AR, 19 3 M3 17 55 26 e SR g, R PPO Bk I TR AL T, SeEl
XPEET LLM HIH NS 5 1 T3 5.

412 ETHRLIENINE

EH T A R AR R IR . B S 355 7 T 5 PR, J5 33 LLM RSl N\ A2 R 2 00 2k T4 7R 1
J5 3. 9T IRAG T G AR BOROR, B TR 1 U725 75 B 5 NBDRI A0k A . B (A AT B A 1 I R DL B A E K
FER EFSUE R, PG SRR il 5 4 e ThREAH 5 B, BT, SLA LLM B R 3R 77 i a4 |4
3. RS BRI E SRR T E

(1) FREA ) T7

FREAZE S RGN LLM B3E7R WA AL IR 2% SR B 7R J7 7, 1k LLM A 5612 20 ) AR
W\ ECAR, Jd i AT B R AT 55 SCAR T AR B TR RIS S5 . O T SRS I i AR AR, 12T VA TR BT E T . HL ik
ER7N N2, DAIOR B T 45 1) IE A B

PRI A AT LA GUI FLif kAT $2HL. et Liu 22 N P HEH T QTypist J7 ik H TR RS 23 5 FH i) GUL &
e, T IFARYE L SUE B GUI IRAR S AR5 8., FEEEAT TRAL B, 451 J 3 o 1A 1 b e AL BRAR B IS 2, %
R R A e X vk, 7R AR BCELARIIR T, QTypist ARIF IR 145 B M N TR 7115 5 8 =0k 68 4 17e
I, LA AT LLM (3R N 2.

PEIR P AR AT A B B AR . H 3l Deng %5 A POE TitanFuzz * B #2217 4E Bl LLM S48 & B bR E A
Hbr API 244 {5 B3R, CAA A R 3. B 7 B8 B bR RE T, T LURYE 5 B AR 5 28B40
B4R, Bilin Li 2 AN PTHE I AceCoder $E/R A, 7 ) LLM BB AR IR 2 /7, A A7 4 FH G 2% 2 A3 1 3K
W5 AT R RUARDRE Y, A2 B LLM 3R7R (5 8., SEILTE EREA 22 2 5 00 N % LLM #H4T387R. X T
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LLM TR R e b 2 & Wl B A%, 2515 B rT CUSE N 8, Hln Asmita 5 A PPN GPT-4 L& T fi#
BusyBox awk /NEEF RS X, B TR A RORFEEASE R BB 50, i3 B #3275 “Generate initial seed to fuzz
BusyBox awk applet”, 752 7 K& 1M1

(2) AR 2 T

HRFERZ ) FIEARR, IEAR S SUFTEXT LLM FIEE/R N & R LD 51 2 SR, AT BE 6 N E
PR PRI 75 48] Hp 5 57 38 B 380 74T 55 ATk

FERDBNIRAT 5 v, — R FAAE T LLM 3271 o 38 i ol A 51 AR IR e, 51 LLM AR A4 UK L il
JE TR SR IR P FE . 4140, Nashid 25 A P CEDAR J7E7E M B /R I BETH T ARSI 7~ Se 45, #5 B 70 B
BT RN ROV EE (O FYIA 8. 7F Chat AFL J79%: O B %3t 7 %t LLM SRR, WA EIRIIT . BN
(Shot-1; Shot-2), ' Shot-1 1 Shot-2 B ARG R EIARHD.

N T SEELE T AR IR SRR IR AS R ], Kang 25 A USIZE 3R W1 LiBro 75 3R EL T 8584k & i AR
i, IREEE BN, FEE T — A Markdown SCRY, FFAESCRY FR R I T — SR 08 4 (140 LLM (364 A%
MBIk, LAR S LLM iy th U3 5 i R 12 “public void test”) 1E 4 78 B B4 7R N 4.

gt — B R R ANREA 2 21 77 S0 LLM (4R AR, Ahmed 25 N RSN T #4277 . Ahmed 25 A4 H
(¥1 ASAP J5 i34 F AR AR A o 4 Sh 4R I 1 SRS IR, BIZESRHE4Y LLM D R AT IR IS 5 4 Fx
JAHAR R AR AR AR REEUER.

(3) Byt )y

SRS T 1 R AR N D IR R 75 V5, B E SR g b @ e LT S, MR AE I AR B BT R X
ISt X FIZ 2D 51 S Bh T 1 PR A AR P 28 R I BT I, 77 & i iR 45 4.

97 A 1 i B 3R, Vikran 28 A 197 PBT-GPT J5 ik it 7 — MFE 4 B3R MR g, 32
NAREHE: A LLM E 2L K Python 27 . BF API CRYHAE AL PBT A4F. Hi N APL 55 3CRY DL A 3
7 BT 7 0 B ks =X S 5N RS U5 2, LLM AR 28 & PR 10 3 A 461 T DASE B 98% I J& 1 . [RIFRth,
Ackerman %5 A VeSO AR AR T4 AT 55, BRI VU5 B4R 05 2, B FRMA . HEZE . JERAIAS X 4 45
IR, IXAH45 LLM AT LS VS HuAS 25 2805 5 4% SN, 7648 iR AR T 0 R AR S b R 7. M0 SRt 45 SRR B, 1
T AT 187 B 1) S A SR U X A0 e AT ASS KA 0 K.

(4) BBhERAE

FERSHIIAAT 5w, B3R iR LLM 4 R S0E E, E A R s R BT, %05 10— A
Z A LLM. Xia % A\ P50t 73T HAS LLM (1 H 3h$m ik, A T4 sl i . 75 Fuzz4 AP, %05 98
Horp—A> LLM 52 M 26 W AN, 3 AR N B i (B4 B2 & AR IR, IR A 3R RN 4R o — A
LLM. 253, WhiteFox 7592 A Fll T WU AHE 42, Frp 471 574047 (9 LLM AT A KSR 5 4 45 3 75 R, 1 L
PR B B LLM AR 4 2 45 1 R ) 2 DA RE .

4.13 fEREERE

WEE 2.2.3 W ATIR, H— LLM F80A TEBDM MR S4B BAT 55 s B A RE RS, thdn, LLM 3R f71E
ARG AR B % 15 MRS R RIBRYE, PRk, B LLM 5 R RIS 38 1% 25 A 7] AW O E S R RIS, 5274
Wi R AR S & 7T DL ARIE BRI 2 3. eAh, BIAE LLM BE08 A 5 I 5 AR TS FR 5, (H 2 LLM 4 T-R08 IR
PP BRI A0 25 H AR T M, TR 75 245 A AL Bumam i vh (078 53 550 A G it e 5 5 vk AT .

(1) JRBRIEAIE

FHF LLM A2 5 i3 A 9 PT BB A7 7R B A R s 1 SUHRR S5 40 138 10 R, v T 3RA5-38 A F 3 AR IR A 45 1 3K
BN, LA LLM A s 25 T I IEAVE 2. fEIUA I LLM 3R 3h B A 5 N AR BB R R, AR AR A i
TR G N REWE TS 1, K2 SR ARHESR#R R A T S0 - I s X

4, Chen 25 N H 9 ChatUniTest J7i%. i% 775111 7 5T ChatGPT M IRHESS, 40 A4 ik BiiE
FMEEIX 3 ANHrB. 7858 A AT 45 S5, ChatUniTest 232 B I0UE M, 20 SRR TC v 4 BE B AE P T I FE 18 2
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R, M2t NMEE AR, AT N 8L T ChatGPT B R 15, I R IEA DAIRIG IR 6 i AL s

5 ChatUniTest 244tL, Yuan 26 A "M 3T ChatGPT BB FII&AIF- J 175 2032 HH 7 ChatTester. ChatTester 775
AL — ANIE ARG SO LR, Z Ak A S 5 TG T AR B3R 48 P (9 G 1R AR 12, T VA TE SRIE I 85
Hh g 3 AR BRI R SR B8 F A A, SR TS AR S 1R AT PR A IR A R DK S G B R A DS AT B R SR 4R
IR, FHORE IR R 38 45 ChatGPT, LASRAE 1E 6 AR .

£ Schafer 2 A\ 2 1 TESTPILOT Hh, [RIREAE 4 1 I6AIE- S b A JBARL 4RT, 5 AR ChatUniTest 1 ChatTester
AN, TESTPILOT FoR B2 5 LLM 2L BAHGIR AT 61). AH, TESTPILOT K A& B iy FH il A% i 25 BAIE A A1, 1%
AT B AT R DA MR 7 d e, AR BRI R SR A B 5, 3o b 2B 1 R 4 R (5 B R 45 1R ik 2%, 11
XA 4R A5 2., DAE LM i % 253 A5 B A vH B AR 491 [ b, InputBlaster!®! 7 i 2 76 A0 A\
A B R, AT (5 B R R 1R~ R L, T T 5145 LLM b 28 sz m il kg N

) Bt

T AR A R A S S, 11 LLM ZEBAT U0 451 A2 s 5 AR S 45 A 15 S R BRMEAS 2 . TR R ATF 5

RGBT TR ITTA R i LLM A 25 1 1 2 A

11411, Mahbub %5 A\ 42 H ) Bugsplainer J7 3R FAFE 4047 7 728 H bR FE O AR B M) 8 g S vdubi, DA
B R RRFR AR S5 1, FR48 75 LLM HERAER AR ARSI B8 ). 3 T8 5 20 A 07 ¥4, 38 W DASICEIL AN L ARARHS ST 14
RIS ARG BN S, DUE AT BE S Ly TR 2 b 5 AR 55 b 50 BRUAS IR, s R SE VA 9 T 3K — R R 1)
$H 245 f2: ChatTester 1 LLMA4Fuzz""", ‘B A 17EHE £ B Bt 23 i3 B A /0 W i A i i 4 7 R PR ik B R
AER, WEFEY . WERBELE ETXEER.

FF Linux AR BBRIINK , B F % B SCRERRS 6, BN T LLM HEAT DR AR T e AR Ak 77,
T R AL ARRY AR D K L v B B 4, W5 Tk 2 i, DA THIZE 55 BT DR, BeAh, WX BIRAS 2 I K, A
BT T E A DU AR R IR IR BRZS SE B W AZ BRI 7R B0 S BRag A7 AP, R e R4 7 ey
FEAS I ER B8 2 25 1 D0 i) 52 2% B FHIST [B] A, [RJ B, PN AZORH S N T2 A IR B LR 4, BEALAE i) N & 8 4
I8, TIERNMARAZ O ThRE. R, WAZ A IGVE 2 IR B 7E R R K 10 T 2% 1 1, 3@ At 1 B X DLAE A2
% K B (X B N SR A R IK 6 2% . TR Kernel GPTV AR ARAL AT 1 8 A8 A0 M7, 4R EUA AR S 3 B FF . A% TR
MZHoE LEE R, FIF LLM RHEEERE 77 A BURT T I SCRIE, DA 5 Y AZ ORI L.

G)ZBRrET

¥ LLM 5 B0 P 548 S 38 5 R 45 6 ] DASE ISR I3 (0 4] s P S AR 288, A5 A8 ABE R Xkt 4t )
T (I 58 0 4x T A T A5 BB 4F RO R FRE R, AT CAEL BRI LLM ZE b7 1 22544, fildn Hu 25 A TR
ChatFuzz R4, X RGP Y 7 —“chat mutator” 41 4F, &2z WP Fith Bk — NP F12)%, HIE7R ChatGPT %
R i S s R AR T R AN, DS BIE 2 (W R M AR . BRIz oh, ) BUs I A B 48R A5 BIM P AR P 19
A5 S Ak BN, Li %5 N UME CCTEST Jrik, SHER p, #4728 5%, 53] — A R KR (py,..., p}. CCTEST it
BRI (5 SR AL LLM, 7T LS 204N [F (9 Fh -2

ERFIH LLM 462 R E 7 INENGRFIH LLM B4 BT R, 15 23— @R 7127, HIREHE %S
ot 7R P AR 78 75 3R A 2. K11, SearchGEMS J7i%: Al CodaMosal”*' 3 35 ) FH 56 48 22 A I ik A7 it A
A SRE R, RERERTIREESZNZRM 7. E0E LR A LLM 4 156 1R 7125 34T, 4R
BN 55 A AR, EA T2 R A IR e 78 5 AR USRS X 3, IR A8 S 77 v AR O i IS A 491, A1
HRIMRBNX L X I, RFE K, SearchGEMS FI LS8 AFL++J732% PUSZIi AR &, T CodaMosa A& FIF LLM A B
R B XTI T2

4) Geitor i

B LLM 558 F 5 niE AL e 8T 5 ikds &, AT A RCE 2 fill A 6. K8 LLM Bef% AR ok
2[R 4], (R 2 F 451 7 i A ks SNBSS S B AT e e AR AL, 2RIl 72 v S fid i 1A 7 B AR BOIR S A2 At
AR EE W, JorkA R0 3508 14 SRR, ok, ROl e T2 X A B2 =, e A< ihilae /7, /o
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TR I RV A3 AN Ak R AN AR AT R I RE D, AT BEAHZE 1R K. A 1 451 B 68 fuk /. 28 B2 (130 2% A, i EL At R 451 01
JUPAREIMARE R, SEHAT T REICR RN, T BRSO IR ) B R 2. Rk, o] LLEE & 40
T HT I 53, %5 LLM AR S ik P ) 2 AT HE 44 AN SR 28, DUIE 4980/ BRI R B B (9 B ) 47148 48101, Fakhoury
2 N VPR ) TICODER Xof A= 008 A 35 R QRS i 48 30 AT HE 5, I MR8 26t i A0 o 7 1o i 28 st £ 0 DR R P
[FIFE, Xia 25 A EMEF LLM 34T H BB 20, il v SR 5 A B kb T 54T 7 He R 4%
4.2 LLM JREhERBEEN

AR R 14D e o A AR B L T 5 26 AT SBI B 2 T RES J. E, SI IR 1 Sl o P o Ak ) 7
B GELMMATS . K2 HTNE A B V200 5T DU 5 00 25 B, S8 s RS0 H 4 R o D9 7 ) R, 1 R
ST R I K R AT S AT 3BT BB YR S0 AR b, i e B R P AV R IR, R IR S5 TR R Y S AR Ak
W B, 50 N AR AT 25 250, A LIRS 22 3] B4, LLM AR (S TR ZRid 72 b B K A IS, B4 -EE kS
AR, BEOE AR RRETR IR F . MR, BT LLM A A S EE NS E, LLM SR P 6 G RRAE 0 7 B R S g
5 58, T AGZARIR 5 2% 2 R F SR IR SR R ZE I 2. B AT, 25T LLM (BRI b R I EL 48 R R
T ETROE. TR TN SHES SRR & M BRI 7.

Wi 5 firzw, MRS T LLM 3R R AR — AR AR Hh, — b S 2R FH 7 5 250808 B S i % LLM 3R 4778
W, FEFR LLM X7 55 8 0 45 1) B0 1 3 A 70 A R B ffs (0 1 S g 127 59— s e 2 R 45 4 W 5 s B R
SEHATE BB LLM (U3RR, 515 LLM A A5 & BRI TR, 58 B BRI iR ) s i B2,

IR =R
wo > {O0X| [ —>
PN MR Bk A DB

|

. W
E e

K5 LLM 3REhH AT 1 — i

4.2.1 WS A Ak

(1) T 1o i 5 72

FESZE AR, O T LLM A= S = 2 B T 5, 38 SR FH A i 7 ¥, il i, Mastropaolo 25 A M2V FH B 915 SO A
PRI R B T TS BEALEATROA. B, Wi B S SR AR = 1B SRR, i — DA,
DASR T LA il 5 18 AU A . 28 4blth, Tufano 28 A MMt 0 F S48 8 R ARG 15 B HEE X LLM BEAT I 25, 85
TEWT 5 HORAE RN 72, A U AW 5 AT ROR, DLE— DR A LLM MW7 5 4 st e

Q) B TR LR 72

WA 5 104, BIAE B T 3 T 4RO 5 A o7 2. 76 DIVAS HEZE B7ep 3% 07 1R A LLM (1 0038 3R
WS T R GE R (¥ 38 55 SO CWE. SR )5, ARYE LLM A= i) CWE U AR BRI . Nashid 55
N PO 7 VR AE M AR R I 2 F B R ST S5 ML ARG R . N D BRI EOR, AR SEIL 76% MIAE
I/ P e A K.

(3) g H B A Tk

FEMR T AN Hh, 22 55 DR B AR A 22 (1 P T BRI 24 b 911, TitanFuzzP e MR 55 Y BE, K LLM
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A I 123 78 CPU A GPU _EHRAT, XA 2 27 = R BR B0 AT K. @i X B CPU #1 GPU IR %= 5, H)
BT A AR 5 PR A E (RIS . 5 T P 2% 51 PE IR RN /], % -+ Python P2/ IMIRATI R, Liu % A Y2 H 1 AID
HE 2R 25 8 S il ad 73 M7 R P MRV IR A AN R O AR 17 AR AR, 2 S5 46 4 20 R P SR DU L — LR 3 I SR AR A 1) A0 K N,
i I A HY 0 22 7 2 B s R A T

B 1 B 22 s Ab, I8 AT BAZE 00 LLM #2 tHAS [RAE 9% 2K, Gl LU R 95 1) 22 5, ()3 B 4RI 1
(¥R P kb, 1 n Li 2 N PI/E IR ChatGPT 1R 514 5 I FH 51 1 B8 11, 22 R4oR £33 B B3R ChatGPT HEWT b
DR i, R AR B A S IR e AR TR i B W] 4 R . AR e RAT RICR M i ) i PRI AE 22 e, ik
PG AT BEAFAETE LE 1) 7
422 GRS T

(1) ET R r 7772

ettt 0 s SR Z AT 55, A 7 10 B A SE B SR G . Oy 1 4 TR LLM RS BB 1) B 77, Paul 25 A 7R 78
FEHT T PN BEE G XT LLM BEAT R0, e b 85 SR e RO ARH J B LA KO 2 ARGV RS, $2 5 LLM XA BRI
R RE 7). et ah R, Lt o5 10 LLM PEReAT B B4R T, B T Bl Al AR AD B4R 42, Zhang 25 A P02
MBI SEAE R BART A5 B BEAT S, e B 0 AR S8 R I 11 200 2 B A A R, ARG (R T R P e 432K
HE SR FIE RIS .

(2) E T PR LRI 7%

) Pl Sl o B4 AN AT LASE B LLM (¥ B, T ELIE AT DAJE T3¢ LLM #EAT B R 3C2 20 i, Liu 2 A
$EHI B VUL-GPT J7ik, 1 5 il i AR A 2R 75 s MBS 4R A 28 5 4 M A BORT B ARRS REAME R, AR5
RIS . AU IR S IRACRS AL & 9t (s B E] GPT A rhidt 47 bR 302 21, SEIiA A LLM
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