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Abstract:  Image magnification is an important technology in medical image processing. High detail areas in 
medical images most often have a definite geometric structure or pattern, such as in the case of edges. This paper 
proposes a learning-based method. Geometric features extracted from the available neighboring pixels in the 
Low-resolution (LR) image form the training set. Assuming the training set is locally corresponding to geometric 
features from the High-resolution (HR) image patch to be reconstructed. Local geometric similarity is described as 
the correspondence. The task of image magnification is formulated as an optimization problem, where the 
optimization coefficients can adaptively tune its value to effectively propagating the features from the training set to 
the target HR image patch. The advantages are the ability to produce a magnified image by any factor, and not 
require any outlier supporters. A Weighted Least Square (WLS) method is provided to offer a convenient way of 
finding the regularized optimal solution, where the weight function is determined by the non-local means. 
Simulation and comparison results show that the proposed method is independent, adaptive and can produce sharp 
edges with rare ringing or jaggy artifacts. 
Key words:  image magnification; local geometric similarity; arbitrary factor; non-local means 
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摘  要: 图像放大技术是医学图像处理中的重要领域.医学图像细节丰富处经常呈现出明显的几何结构特征或模

式,如边缘.提出了一种基于学习的方法,将低分辨率图像块作为可用的邻域像素并提取其几何特征信息组成训练

集,与高分辨率图像块之间建立局部对应关系,这种对应关系即为局部几何相似性.将训练集信息有效传递至待重建

高分辨率图像块,图像放大的问题转化为重建系数的最优化问题,并且基于非局部平均思想,将其进而转化为加权最

小二乘问题得到正则化解.实验结果表明,本方法不仅可以进行任意倍图像放大,且它可以摆脱一般方法对训练集合

的依赖,具有较好的独立性,自适应性和边缘保持特性. 
关键词: 图像放大;几何相似性;边缘保护;任意倍放大;非局部平均 
中图法分类号: TP391   文献标识码: A 

1   Introduction 

Image magnification is often required to aid in the display, manipulation, and analysis of medical images. It 
also plays a critical role in computer-aided diagnosis and computer-assisted surgery. Image magnification involves 
enlarging a small image to several times its size and often requires some sort of algorithms. This paper presents a 
novel edge-adaptive learning-based algorithm which uses local image behavior. It can magnify image by any factor. 

This paper is organized as follows. Section 2 discusses several published image magnification algorithms. 
Section 3 formulates the magnification problem more precisely and introduces our method based on the analysis of 
local geometric similarity. We show experimental results in Section 4 and conclude the paper in Section 5. 

2   Related Work 

There are mainly four categories of approaches for this problem: polynomial interpolation-based methods, edge 
profile-based method, progressive edges sharpen-based methods and learning-based methods. The nearest 
interpolation and bilinear interpolation belong to the first methods, which are the most well known and widely used 
techniques. The assumption of global continuity and smoothness constraints often produces unsatisfactory results 
such as blurred edges. The human visual systems are highly sensitive to the edge structure, which conveys much of 
the image semantics, so a key requirement is to preserve sharp edges. There have been many attempts[1−3] at 
improving the local polynomial image models in order to enhance edges. They improved the magnified results but 
still cannot avoid some inherent defects, including block effects, blurred details, and et al. 

Edge profile-based methods try to fit continuous or discrete space edge and then resample it at the higher 
density Images. Anastassiou[4] detected edges and fitted them by some templates to improve the visual perception of 
enlarged images. Liu[5] characterized local edge segment using a ramp edge model, the ramp width parameter values 
were kept at the same level as the edge pixels in the enlarged image, so the enlarged edges would be as sharp as the 
edges in the original. Battiato[6] took several steps to filling the missing samples along different detected directions. 
The methods are highly sensitive to edge localization. The penalty to image quality is high if the edge estimates are 
wrong. 

The progressive edges sharpen-based methods often have iteratively sharpened edge if given a initial zoomed 
image. Morse[7] proposed a level set-based method to preserve smooth contour in the Low-resolution image. 
Gilboa[8] proposed a nonlinear PDE-based method combining backward and forward diffusion to sharpen edges. 
These methods demonstrate an ability to sharpen images but suffer from some haloing artifacts due to extrapolation 
overshooting. 

All three categories of approaches above suffer from rapid degrade if the magnification factor is large. The 
learning-based approach can solve this problem, which used a learned co-occurrence prior[9−11] to predict the 
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correspondence between the training set and the test sets. The first class of learning-based algorithms is from a 
training set of patches from other images, e.g. example-based super-resolution method[12]. But it is unclear how 
many training examples are sufficient for the generic images, and we must do a lot of experiments to find some 
suitable training examples. 

Another class of learning-based algorithms including our method is from a training set of local image 
behavior[13−15]. In this paper the training set is selected from the local neighborhood. Our motivation comes from 
geometric duality proposed in New Edge Directed Interpolation (NEDI)[15,16]. Geometric duality referred to as the 
directional correspondence between the high-resolution covariance and the low-resolution covariance. In NEDI, the 
covariance of LR image can be used to estimate the HR image covariance and a Wiener-filtering like interpolation 
scheme was proposed. Their results are impressive but do not indicate sufficient sensitivity to edges due to sample 
statistics change and hence may introduce some artifacts in local structures. Inspired by his work, this paper 
generalizes its idea to propose local geometric similarity, and develops a generic framework based on that. In this 
framework, assuming the training window and the neighborhood window are from a single model, the solution is 
largely dependent on a proper choice of the training window. To fully exploit local geometric similarity, all pixels in 
training window should be geometrically corresponding to those in neighborhood window strictly. 

For statistically nonstationary image data, if data in the training window belong to two quite different models, 
The Wiener-filtering like interpolation scheme can only learn a model somewhere between these two and will give 
poor results for the current pixel. To alleviate the problem, we further provide a Weighted Least Square (WLS) 
method to find the optimization solution for convenience, where the weight function is selected based on the 
neighborhood filters, especially non-local means[18]. Therefore, our new generic approach can magnify by any factor 
while NEDI can only work for magnification by factors of two, and different from other learning-based methods, 
the training set used in our new approach are fewer and  without  any outlier supporters. 

3   Problem Formulation 

3.1   Mathematical model 

Suppose k is a magnification factor. Consider Fig.1, assuming y is the interesting unknown pixel, we give the 
following definition: 

Definition 2.1 (neighboring window). The interesting unknown point y and its nearest known neighbors x, are 
called B(ε,n). (B(ε,n)={x∈Ω,||y−x||≤ε}, where ε=[ε0,ε1,…,εn] is a distance vector, εi denotes the distance between the 
center point and one of the surrounding points. n is the number of pixels in the window, Ω is the known points set). 

 
 
 
 
 
 

Training
window B(ε,n)

Fig.1  Mathematical model 

Our problem is to estimate y with minimum uncertainty of the feature values from its neighboring window, 
 y=βTx (1) 

where x=[x1,x2,…,xn] and coefficients β=[β1,β2,…,βn]T are n*1 column vectors, 
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We select training set based on the proximity of their locations to y. In this case, the training set is generated 
from the local neighborhood. Take a subset of the training set to form the training window: 

Definition 2.2 (training window). A similar neighboring window centers around y. We call it B(ξ,n), where 
ξ=[ξ0,ξ1,…,ξn] is also a distance vector, ξ=lε, l is a distance ratio of ε, and l≥1. All the training windows form the 
training set. 

The definition of the training window implies that the distance between the center point and each surrounding 
point is proportional to that in the neighboring window along the same direction. l≥1 means that the size of training 
window can not be smaller than the neighboring window on account of local statistics estimation requiring large 
windows for accuracy. 

The hope to use the training window is that features, e.g. covariance[15], in the training window are similar to 
those in the neighboring window. In this paper, the feature extracted in the training window is local geometry, which 
is defined as the following: 

Definition 2.3 (local geometry). The local geometry of a window can be described by the contribution with 
which a data is reconstructed from its neighbors. The relation (mapping) of the contribution between the training 
window and the neighboring window are called local geometric similarity. 

According to definitions above, coefficient β is the local geometry in the neighboring window, which can learn 
from the training set by propagating their contribution to coefficients β. Hence, assuming image can be locally 
modeled, i.e., let all m training windows B(ξ,n) satisfy Eq.(1), optimality is achieved by minimizing the local 
estimate error for all the training windows, 
 min||x−Cβ||2 (2) 
where 

1 1 1 1

2 2 2 2
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. 

C is a m*n matrix. Each row consists of the surrounding points in a training window. 
After β is solved using Eq.(2) (which will be detailed in next section) we can get a magnified image by 

calculating y using Eq.(1). 

3.2   The weighted least square (WLS) method 

In this paper, to effective exploit the training window behavior, a Weighted Least Square (WLS) method is 
proposed. The aim of using training window is based on the assumption that all the training windows are roughly 
from a single model. Features in the neighboring window have the same characteristics as those in all the training 
windows. In fact, it is not the real case. The proposed WLS method attempts to give different weights to increase 
the contribution of the most similar training window. Thus a weighted sum of squared errors is minimized: 
 MSEweighted=W||x−Cβ||2 (3) 
where W is a diagonal matrix, 
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A natural way to determine the weight depends on how close the pixel in the training windows is to the current 
pixel. The weight decreases the contribution of the pixels geometrically farther from y. For example, using a Gauss 
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kernel as the weight function, 
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where h acts as a filtering parameter. 
But the above weight often fails to satisfy our desire, motivated by non-local means denoising method[18], the 

weight function can be calculated from the similarity of values between Ci and x. The pixels with a similar grey 
level neighborhood to x have larger weights in the average. 
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where, the parameter h acts as a degree of filtering. Z(i) is the normalizing constant, 
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The Non-Local means weight function does not only compare the grey level in a single point but the 
geometrical configuration in a whole neighborhood. This fact allows a more robust comparison than the weight 
function (4). 

Next, our objective is to solve Eq.(2) to find an optimal solution. For the case that C has full rank, we can get a 
unique solution easily. But one possible situation is that the data set C is often not full-ranked, so the problem is 
ill-posed. In such a case the regularization approach regarded the problem as the constrained minimization of the 
following cost function: 
 MSEregularization=W||y−Cβ||2+λ||Lβ||2 (6) 
where L, as the regularization operator, is often chosen to be a smoothing function such as the identity matrix. λ 
(λ>0) is the regularization parameter. It controls the tradeoff between these terms and represents the amounts of 
regularization. It can be easily shown from regularization theory[17] that the resultant coefficient vector β will be 
  (7) WCCLLWCC TTT 1)(ˆ −+= λβ

The above strategy is clearly shown in Fig.4, the result images are better visually when the weights are added 
(Fig.4(f)). 

3.3   Magnification steps 

The task of image magnification is to estimate the values of those pixels that are missing in the HR image 
based on the available neighboring pixels of the LR image. It is performed in three steps. A block diagram is shown 
in Fig.2, and the detailed steps are described next. 

 
 

Fig.2  Reconstruction steps performed for each local region 

As discussed above, each window is represented by a feature vector. A simple scheme is to define the feature 
vector as a concatenation of the luminance values of all pixels inside the corresponding window. 

(1) Determine the neighboring window: We can customize our scheme by choosing different neighboring 
windows. One possible approach to determine the neighboring window is to use samples from the LR image. If 
choosing four diagonal LR pixels (marked by ●) around y as our neighboring window (the blue region in Fig.3 
(Each point represents a 2-D HR image pixel. The black circular dots (●) are the LR image pixels obtained via 
decimation of the HR image, white circular dots (○) are the interior pixels from the HR mage, and white squares (□) 
are the aligned pixels from the HR image, gray diamonds (◆) where the dashed red line passed are the interpolated 
pixels in the LR image. The neighboring window is composed of four diagonal pixels in the blue region. The 

Determine the training window Magnify the image Determine the neighboring window
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training window can be composed of four diagonal LR pixels or interpolated pixels where the red line (solid or 
dashed) passed)), we can develop a bilinear-like scheme. The interior pixels ( marked by ○) is recovered by using 
four diagonal LR samples in the first step. The aligned pixel (marked by □) is then estimated by using two already 
recovered nearest HR samples and two surrounding nearest interior pixels. 

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5 
 
 
 
 
 
 
 
 
 
 

(a) Recover interior pixel                       (b) Recover aligned pixel 

Fig.3  Determination of the neighboring window and the training window (magnification factors of 1.5) 

(2) Determine the training window: According to the definition of training window, all surrounding pixels 
(where the red line passed ) must be selected to satisfy the directional and distance correspondence to the center 
pixel. For interior pixels, to estimate y(i,j) in the HR image, the LR sample x(⎣i/k⎦,⎣j/k⎦) is as the center pixel, the 
surrounding pixels in its training window can be determined as follows: 

  (8) 
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For aligned pixel y(i,j), we take vertical aligned pixel as an example. One of its training window is centered 
around x(⎣i/k⎦,j/k), where the surrounding pixels are determined by two LR samples: C(2)=x((⎣i/k⎦−l*((i/k)−⎣i/k⎦)), 
j/k), C(4)=x((⎣i/k⎦+(1−l)*((i/k)−⎣i/k⎦)),j/k), and two already recovered HR samples: C(1)=y(i,j−1), C(3)=y(i,j+1). 

As can be seen from Eq.(8), the ratio l is an important parameter to be considered, which determines the size of 
the training window. Local statistics estimation requires large windows for accuracy but small windows for local 
adaptation, resulting in a limit tradeoff. To deal with the tradeoff, the following two strategies are proposed: 

(a) Magnification step by step. While this approach works well for small magnification factors, the approach 
quickly deteriorates for large factors. For larger factors the size of training window is larger and using LR samples 
quickly takes away from the locality of the method. In experiments when the magnification factor k≥3 (the results 
will deteriorate). To solve the problem we adopt step by step strategy. 

(b) Using interpolated pixels. When k is non-integer, the training window cannot be exactly at LR indices (In 
our cases, if LR samples are at location 0,1,2,…,rr, then in the HR image the pixels of the LR image are at indices 
0,k,2k,..,rr*k. Our task is to estimate those pixels at integer indices). Using interpolated pixels (marked by ◆) in 
determining surrounding pixels C is an alternative. For example, if l is 2, the surrounding pixels (Fig.3(c)) are not at 
the LR indices (marked by ◆), we can use bilinear interpolation or other basic interpolation method to estimate C 
with the help of the four nearest LR samples at integer locations. 

From the basic idea of above discussion, the magnified image y is a function of the low-resolution image x and 
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2
2 2H

sampled interpolation kernel H2D, 
 y=f(x,H2D) (9) 

Usually f is selected to be two-dimensional convolution operator *. We determine the spatially adaptive 
interpolation kernels as the following, 

  (10) 2
2 2 2

ˆ arg min || ( ( , ) || arg min || ( * ) ||D H D H DH W x f C H W x C= − = −

The kernel Eq.(10) is a two-dimensional and non-separable. The interpolated values are computed as the 
weighted average of the four nearest LR samples as the bilinear method does. However, the bilinear interpolation 
kernel is a tensor product of symmetric and one-dimensional (1-D) function consisting of linear pieces between 
knots at {−1 0 1}, so the kernel is separable and cannot adapt to varying pixel structures across an image. The 
interpolation kernel we proposed is spatially adaptive and extract the similarity from the neighboring LR samples. It 
does not explicitly estimate edge direction and avoid the risk of wrong estimation. The non-local weight added to 
the kernel further strenghthens the propagation of the local geometric similarity. The aim is to faithfully propagate 
the local edge information from the LR image to the HR image. we can also develop a higher order scheme, e.g., 
bicubic-like scheme utilizing 16 surrounding LR samples. However, the method is not very sensitive to the higher 
order schemes. The major challenge in image zooming is to estimate local edges in order not to interpolate the data 
across them. Our approach is designed to be both low order (requiring a small support for the interpolation kernel) 
and edge-adaptive. 

4   Experimental Results 

We test our approach on a variety of images. Our algorithm is compared with four other magnification methods 
NEDI[15], Bicubic, Sub-pixel edge localization[4] and Aqua[13]. NEDI[15] and Aqua[13] are obtained directly from the 
author. Bi-Cubic interpolation is Matlab’s “imresize” function. The Sub-pixel edge localization method is our own 
implementation of the algorithm described in Ref.[4]. Our method is implemented in MATLAB. For color image, 
we use the YIQ color model where the Y channel represents luminance and I and Q channels represent chromaticity. 
Only the luminance values from the Y channel are used while other two channels are simply copied from LR image 
to the target HR image. 

Since the computation of solving linear equation is typically negligible when compared to Bicubic interpolation. 
Dramatic reduction of complexity can be achieved for image containing a small fraction of edge pixels. In order to 
manage the computational complexity, the adaptation method is only applied to edge pixel (A pixel is declared to be 
edge pixel if the local variance in its neighborhoods is above a preselected threshold). In our implementation, the 
threshold and neighboring window size are set to 8. The global regularization parameter λ is set 0.01. 
Experimentally the effect of the choice of λ is small in the range of 10−5 to 10−2 for tested images. 

For the ratio l, we set l=N*k0, where N≤3, k0 is a real, and k0≤2. In fact, NEDI[15] is an example where N is 2 
(k0=1, l=k0×N=2). 

In Fig.4, the result from Bicubic has many blurred effects along the edges. Sub-pixel method generates sharp 
edges in places but it looks like a drawing. The Aqua method and NEDI method gives a descent reconstruction, but 
introduces undesired smoothing. It appears that the edges reconstructed by our methods are sharper with much less 
ringing and aliasing than other methods, contributing to superior visual quality where more details can be observed. 

We now conduct more challenging experiments on more images for arbitrary factors. In Fig.5, we magnify a 
blood vessel color image to compare our method with Bicubic and Aqua[13] because they can magnify by arbitrary 
factor. For a larger factor, the magnification task becomes more difficult. As already shown in these figures, the 
results from Bicubic introduce many jaggie artifacts. The Aqua improves the results better, but our magnified image 
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gives clearer blood vessel wall and generates more faithful results to the original edge information. 

             
(a) Original image                                         (b) Bicubic 

             
(c) Subpixel[4]                                           (d) Aqua[13] 

             
(e) NEDI[15]                                          (f) Our result 

Fig.4  Anatomy MRI image with magnification factors of 2 

       
(a) Original image            (b) Bicubic                (c) Aqua[13]               (d) Our result 

Fig.5  Blood vessel image with magnification factors of 5 

Finally, we test our algorithm to verify the effective strategy of magnification step by step for a large 
magnifaction factor. The results are shown in Fig.6 (The ratio l is set 1*1.75 for the basic factor k0 of 1.75). From 
the result image (Fig.6(d)), if not adopting the strategy, the result is even worse than that with Bicubic method for 
the training window cannot catch the locality of the image. Only magnifying step by step can the training window 
faithfully reflect the local image structure. The result image (Fig.6(e)) shows that the step by step strategy can 
reliably recover the image details and produce sharp edges with minimal additional artifacts. 

We down sample the above HR images to get the corresponding LR images, from which the original HR 
images were reconstructed by the proposed and competing methods. Since the original HR images are known in the 
simulation, we can compare the interpolated results with the true images, and measure the PSNR of those 
interpolated images. The PSNR results for the test images are presented in Table 1, where we can see that our 
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method outperforms other methods with higher values. 

                
(a) Original image            (b) Bicubic                (c) Aqua[13]       (d) Our results in a single step 

 
(e) Our results using step by step strategy, magnification factor of 2 first, then 1.75 

Fig.6  Brain MRI image with magnification factor of 3.5 

Table 1  PSNR (dB) results 
Image Bicubic Sub-Pixel[4] Aqua[13] NEDI[15] Proposed method 

Anatomy 17.79 16.63 17.81 17.61 18.01 
Blood cell 26.38 26.30 26.50 26.40 26.70 

Brain 24.59 24.26 24.80 24.36 25.62 

In terms of complexity, the same as NEDI[15], the running time depending on the percentage of edge pixels in 
the image. The overall complexity of our method is still over an order of magnitude higher than that of linear 
interpolation. 

5   Conclusion 

This paper presents a novel method for medical image magnification. A linear optimization method is 
proposed, where optimization coefficients can be adapted by propagating local edge information based on local 
geometric similarity. Arbitrary magnification factors can be used and samples on any lattice can be estimated 
directly. A WLS method based on non-local means is proposed to implement our idea, which can more fully exploit 
local image behavior. Through visual examples this paper has shown that our algorithm performs better than several 
other published magnification algorithms, especially in structured images and around edges where most other 
algorithms introduce objectionable artifacts of jaggedness. 
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