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Abstract: Two strategies for information exchange between processors in paralel ant colony algorithm are
presented. Theses strategies can make each processor choose other processors to communicate and to update the
pheromone adaptively. A strategy is also presented to adjust the time interval of information exchange adaptively
according to the distribution of the solutions so as to keep balance between the convergence speed and the diversity
of the solutions. The adaptive parallel ant colony algorithm (APACA) based on these strategies adaptively updates
the pheromone according to the equilibrium of the pheromone distribution in each information exchange so as to
avoid the precocity and local convergence. These strategies are applied to the traveling salesman problem on the
massive parallel processors (MPP) Dawn 2000. Experimental results show that the algorithm has higher
convergence speed, speedup and efficiency than other parallel ant algorithms.
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1 Introduction

Ant colony algorithm (ACA) is a meta-heuristic algorithm simulating the collective behavior of real ants.
Inspired by the collective effect of ant colony, Dorigo, et al. first advanced an ant colony system and the ant colony
algorithm (ACA)™*? to solve several discrete optimization problems. In ACA, artificial ants are created to emulate
the real antsin the process of seeking food and exchanging information. The successful simulation has been applied
to TSP problem™, quadratic assignment problem!®, mesh-partition problem!®, protein folding problem!®, web page
classification”! and other combinational optimization problems®*®. ACA can usualy converge to an almost
optimal result in a certain number of iterations, but it becomes more difficult to speedup the algorithm when the
complexity of the problem increases. To parallelize the ACA into a parallel ant colony algorithm, the structure of
ACA must be modified to fit the parallel computational model. To obtain an efficient parallel ant algorithm, three
key aspects must be considered: how to divide the single ant colony of sequential ACA into several mutually
independent sub colonies so as to assign them into the multiprocessors, how to control and to manage the
information exchange between the sub colonies, and when the information exchange between the sub-ant colonies
should take place. Different methods of colony dividing and information exchanging produce different parallel ant
colony algorithms.

Some results on parallel ant colony algorithms have been reported recently. Bukinheimer™ proposed two
synchronous and asynchronous parallelization strategies. In the synchronous strategy, every processor exchanges
information after every iteration, while in the asynchronous strategy, every processor exchanges information after a
certain time interval regularly. Talbi™™® presented a synchronous fine grained parallel ant colony algorithm in
master/servant fashion combined with local tabu search, and applied this algorithm to solve quadratic assignment
problem (QAP). Piriyakumar DAL introduced an asynchronous parallel Max-Min ant colony algorithm
associated with the local search strategy. Their algorithm was tested on the TSP using the parallel computer
Cray-T3E. Randal M!*" introduced a synchronous parallel strategy which assigns only one ant on each processor.
Dorigo M advanced a parallel ant colony algorithm on the hyper-cube architecture by modifying the rule of
updating the pheromone so as to limit the pheromone values within the range of [0,1]. This new approach enhances
the ability of the ant colony algorithm to deal with complicated objective functions theoretically and practically. By
modifying the classical ACA, Merkle D!*! proposed a parallel ant colony algorithm on reconfigurable processor
arrays. The running time of the algorithm is quasi-linear with the problem size n and the number of ants on a
reconfigurable mesh with n? processors.

The pattern and the time interval of information exchange between the processors are the most important
factors to be considered in parallelizing the ant colony algorithm. These factors affect not only the speed of
convergence, but also the optimization ability of the algorithm. In the algorithms of Ref.[14-17], the globally best
solution is computed and broadcasted to all the processors in information exchange. Then every processor updates
the pheromone matrix according to the global best solution. Besides the method of broadcasting the globally best
solution, Shu-Chuan Chut® presented other six strategies for communication between ant colonies. All these
methods of information exchange could not take the characteristic of each colony into account, and may probably
create some similar solutions in different processors, which cause large amount of pheromone on some trails. These
trails could cause local convergence, and will reduce the searching ability of the processors. In the algorithm of
Ref.[21], each sub-colony updates the pheromone according to its neighbor’s pheromone matrix. Since the logical
neighbor of each sub-colony is determined by a randomly constructed virtual ring structure, and the weight of each
sub-colony’s pheromone is fixed, the algorithm does not consider the degree of the evolution of the sub-colonies. In
the algorithms of Ref.[14-17,20,21], the processors exchange information in a constant time interval. Since this
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constant time interval information exchange does not take the distribution of the solutions into account, it may
influence the diversity of the solutions and the convergence speed. Although Ref.[14] acknowledged that this
constant time interval of information exchange could affect the optimization speed, diversity and convergence of the
algorithm, the detailed analysis of the effect and the method to reduce it have not been provided.

Due to the overhead caused by synchronous and communication, the parallel algorithms mentioned above are
not efficient, their speed of convergence and performance could be improved. In this paper, two strategies for
information exchange between processors in parallel ant colony algorithm are presented. Theses strategies can make
each processor choose the partner to communicate and to update the pheromone adaptively. In order to increase the
ability of optimization and to avoid early convergence, we also present a strategy to adjust the time interval of
information exchange adaptively. The adaptive parallel ant colony algorithm (APACA) based on our strategies
adaptively updates the pheromone according to the equilibrium of the pheromone distribution in each iteration so as
to avoid the precocity and local convergence. These strategies are applied to the traveling salesman problem on the
massive parallel processors (MPP) Dawn 2000. Experimental results show that the algorithm has higher
convergence speed, speedup and efficiency than other parallel ant algorithms.

2 Adaptive Strategies for Choosing Processorsto Exchange I nformation

Suppose P processors are used in APACA, the ants are divided into P sub-colonies. Each processor is assigned
one sub-colony of ants which can make its local optimization independently in its own processor, and all the
optimization processes of the sub-colonies can be carried out in paralel. After several generations of local
optimization, the solutions of a sub-colony could become stagnant and probably no better solutions could be
generated. To prevent such local convergence, the sub-colonies exchange information and update pheromone matrix
by message passing between processors. Instead of choosing a neighboring or a random processort??, we propose
two strategies for information exchange which enable each processor to choose some other processors to exchange
information adaptively according to their fitness or dissimilarities.

2.1 Thestrategy based on fitness

Let foe(i) be the average fitness of solutions by processor i on current iteration. In every information exchange
step, fave(i) of all the processors are sorted in descent order. Suppose the indices of the processors after such sorting
are rank;, ranky,...,ranke. Let g=log,p, the binary form of i be (ig-1ig2...,i0)2 and i(I)=(iq,1,...,i_,,...,i0)2, for
1=0,1,...,0-1, then the processor with index rank; (i<[1,2,...,P]) chooses the processors with indices ranki;
(1=0,1,...,0-1) to exchange information.

In the information exchange, after the processor with index rank; (i€[1,2,...,P]) communicates with processors
with indices rank;g for 1=0,1,...,0-1, the elements #(sk) (sk=1,2,...,n) of its pheromone matrix are updated as
follows:

q-1
Trnty (SK) = (1= ) T,y (S.K) +§z<q = 18K ) W i ran (S K) )
1=0
where pe(0,1) is the evaporation coefficient of the pheromone in processor rank;, and 7 is defined as:

1, Thetrail (s,k) isincludedin thebest tour of processor ranki)
Vianky = 2

|0, Otherwise

This strategy enables the solutions of processors rankig (1=0,1,...,0-1) to have different influence on the
pheromone updating in processor rank;. If the average fitness of a processor is relatively high, it will have greater
influence on the pheromone updating. This will enable processor rank; to make full use of the information from the
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processors with high average fitness so as to increase the pheromone on the best trail which is helpful to accelerate
the speed of optimization in processor rank;.

By adjusting the pheromone adaptively, the ants can avoid falling into the local optimum on the process of
optimization. Meanwhile, the processor of low average fitness can improve their searching speed effectively and
enhance the optimization ability by combining with the information coming from the processors of higher average
fitness.

2.2 Thestrategy based on dissimilarity

We use diss(i,j) to measure the dissimilarity of the pheromone in processor i and processor j:

2SStk =, (k) ®

n(n-1) =3

diss(i, j) =

In the strategy based on dissimilarity, each processor chooses the g processors with the most different
pheromone, hamely, processor i receives pheromone information from the q processors with the most dissimilarity.
Suppose the indexes of those processors are iy,ip,...,iq, processor i updates the pheromone matrix with the
information coming from those processors:

q
7.(s,K) = (1= p)-7,(s.K) +§z(q ~i)w, 7, (sK) (4)
=1
where pe(0,1) is aso the evaporation coefficient of the pheromone in processor i, and 7 is defined in Eq.(2).

From Eq.(4), we can see that the processors with larger dissimilarity will have greater influence on the pheromone
updating. Since the strategy of information exchange based on dissimilarity enables each processor to choose its
partner by their fitness and dissimilarity, each processor will exchange information with the processors which have
the most dissimilarity and get the information of the highest fitness solution. Since the processors can update its
pheromone with reference to the information on the trail of the best solutions of its partners, the processors can
evolve towards the optimum solution and maintain the diversity of pheromone distribution to avoid local
convergence and precocity.

3 Strategy of Adaptively Adjusting the Time Interval of Information Exchange

The purpose of information exchange is to propagate the information of the high quality solutions to other
processors. When the optimization process of one processor tends to converge, it can get rid of local optimum
solution by the information absorbed from other processors. If the pheromone of the processors lacks of diversity,
the time interval of information exchange should be reduced so that the diversity can be increased and the searching
ability can be enhanced by information exchange. If the processors have diversified pheromone, such time interval
should be increased so that the overhead of communication can be reduced and each processor can continue
searching in its own environment of evolution. To adjust the time interval of information exchange adaptively
according to the diversity of pheromone, we denote the average and maximum dissimilarity of the pheromone in

processors as diss_ave and diss_max respectively, i.e.

P P
diss_ave:ﬁéédiss(i,j), diss_max = max{diss(i, j)} -

1<j<P

The time interval of information exchange period is determined as follows:
diss_ave 1

diss_max’

period = max{k~ (5)
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where k is a positive constant. Since diss_ave is the average dissimilarity of the pheromone in processors,
—glss_ave reflects the global diversity in the processors. When its value increases, pheromone of the processors
iss_

becomes well diversified, the time interval of information exchange can be increased appropriately in order to
reduce the overhead of communication. When it becomes smaller, pheromone of the processors in the whole system
lacks of diversity, so the time interval of information exchange should be reduced in order to interchange the

information of the best solutions more frequently within the processors to prevent local convergence.

4 Experimental Resultsand Analysis

We test our parallel ant algorithm APACA based on the adaptive strategies mentioned above on the massive
parallel processors Dawn 2000 using MPI (C bounding). The TSP benchmarks from the library TSPLIB?® are used
in the experiment. The parameters in the test are set as follows: p=0.4, =1, =2, k=16, the number of antsis equal
to the number of cities, the number of processors used is 6. We perform 50 trials on each problem and 2000
iterations on each trial. Table 1 shows the experimental results on five TSP problems. In the table, Bit-PACA
represents the algorithm of adapting the 4th communication strategy in Ref.[20], which enables the sub-colony i to
choose the colony j differs by one bit. Fit-APACA stands for APACA which determines the time interval of
information exchange based on fitness, while DissAPACA is based on dissimilarity. The number in the name of a
TPS problem is just the number of the cities in the problem, for instance, there are 318 cities in problem [in318.

Tablel Experimental results of Bit-PACA, Fit-APACA and DissAPACA

The number of

Problem  Algorithm Best value Average trialsreaching ~ Time(s)
value )
the best solution
Bit-PACA 426.21 433.38 48 12.53
eil51 Fit-APACA 426.21 426.21 50 10.07
Dis-APACA 426.21 426.21 50 10.54
Bit-PACA 538.37 549.37 47 22.25
ell76 Fit-APACA 538.37 539.98 49 1551
Dis-APACA 538.37 538.37 50 16.49
Bit-PACA 15793.92  15937.62 42 28.29
d198 Fit-APACA  15780.03 15783.69 46 20.34
DissAPACA  15780.03 15781.48 48 22.01
Bit-PACA 42036.72 42 108.25 43 44.71
lin318 FitAPACA  42029.14 42033.71 47 34.58
DisAPACA  42029.14 42 032.48 47 36.54
Bit-PACA 2770161 27798.16 42 117.58
att532 FitAPACA  27686.45 27717.75 45 104.39
DissAPACA  27686.45 27 705.32 47 109.41

From Table 1, we can see that Fit-APACA and DissAPACA have more trials getting the theoretical optimums
and their average length of the shortest paths in the trails is much smaller than that of Bit-PACA. Thisindicates that
our parallel algorithm has higher optimization ability and its computation time is reduced due to its high
convergence speed. The reason for APACA’s high optimization ability is that it can accelerate the convergence and
avoid premature by determining the partners and the time interval of information exchange according to the
diversity and the quality of the solutions. APACA uses two strategies to choose the communication partner
adaptively, while in the algorithm of Bit-PACA all the sub-colonies could choose only the other sub-colony with the
different codes to communicate. But since the sub-colonies are encoded randomly without any heuristic
information, Bit-PACA has lower optimization ability than APACA.

Figure 1 shows the evolutionary process of the best solution in the test on kroA100 problem to compare the
performance of our DissAPACA with that of Bit-PACA. From Fig.1, we can see that the evolutionary process of our
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algorithm converges after only 1200 iterations. After reaching the best solution, the curve is flat and constrained
within a narrow scope around the best solution. But the curve of Bit-PACA fluctuates even after 1800 iterations.
This shows our algorithm is more stable and effective than Bit-PACA. The high performance and efficiency of
APACA is the result of its adaptive strategies of information exchange which enable the ant colonies to make full
use of the information coming from the other processors to update the pheromone matrix and to guide the further
search along the direction towards the best solution.

26200 26200
25700 25700
25200 |I 25200 |I
24700 24700
24200 242001t
23700 | 23700} |
23200 II 23200 |
22700 22700+ 4
22200 Il 222001
21700} N . . 21700 k-, 1
21200 Lemer e e e m e T S STEETTET T b 0|0 | P ——— i i e P it |
0 250 500 7501000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Number of iterations Number of iterations
(a) Solutions obtained by “Dis-APACA” (b) Solutions obtained by “Bit-PACA”

Fig.1 The evolutionary process of the best solution for kroA100 problem

The results of APACA on the TSP problems using different numbers of processors are listed in Table 2. From
the table we can see that when the number of processors is increased, the computing time can be reduced due to the
fewer ants assigned on each processor. However, since the overhead of communication increases the total time of
the algorithm, the speedup of our algorithm can not increase linearly with the increasing of the processors exactly.
Thisisin conformity with the Amdahl’s Law.

Table2 Comparison of the results using different processors

Number of .Number qf 3
Problem Best value Average value trials reaching Time (s)
processors :
the best solution
3 426.21 431.05 45 18.49
eil51 6 426.21 426.21 50 10.54
10 426.21 432.92 44 6.27
3 21 282.44 21 335.81 37 31.52
kroA100 6 21 282.44 21 285.16 48 17.35
10 21282.44 21 305.91 41 10.17
3 42 029.14 42 092.73 35 68.25
1in318 6 42 029.14 42 032.48 47 36.54
10 42 029.14 42 048.51 40 2241
3 27 686.45 27761.85 34 198.35
att532 6 27 686.45 27 705.32 47 109.41
10 27 686.45 27 746.61 42 67.29

In the experiment, we also compare the results of APACA with that of the parallel ant algorithms with fixed
time interval of information exchange. We test the problems using different time intervals of information exchange
and the results are shown in Table 3. It can be seen in Table 3 that the quality of the solutions by APACA is higher
than that of the algorithms with fixed time interval of information exchange. If fixed time interval is adopted, longer
time interval requires less communication overhead and hence reduces the time cost. But on the other hand, since
the information of the best solutions cannot be exchanged frequently, this could affect the search ability of the
algorithm and the quality of the solution. Using the adaptive strategy to adjust the time interval of information
exchange, APACA can keep balance between the computation time and the quality of the solution so as to get
higher quality solutions.
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Table3 Comparison of the results by different time intervals of information exchange

Problem Criterio_n of The timeinterval of information exchange
evaluation 4 6 8 Fit-APACA
ail51 Best value 427.34 429.75 434.48 426.21
time (s) 9.53 9.39 9.26 10.07
KroA100 Best value 21 287.56 21294.18 21301.34 21282.44
time (s) 15.58 15.34 15.21 16.56
d198 Best value 15791.81 15802.17 15 814.92 15 780.03
time (s) 19.51 19.39 19.28 20.34
pcbad2 Best value 50 796.81 50 815.46 50 829.35 50 778.13
time (s) 73.44 72.03 71.56 73.54

5 Conclusion

To improve the efficiency of the parallel ant colony algorithm, we present two strategies for information
exchange between processors. Theses strategies can make each processor choose other processors to communicate
and update the pheromone adaptively. We also present a strategy to adjust the time interval of information exchange
adaptively according to the distribution of the solutions so as to keep balance between the convergence speed and
the diversity of the solutions. Our adaptive parallel ant colony algorithm (APACA) based on these strategies
adaptively updates the pheromone according to the equilibrium of the pheromone distribution in each information
exchange so as to avoid the precocity and local convergence. Experimental results based on the traveling salesman
problem on the massive parallel processors (MPP) Dawn 2000 confirm the high convergence speed, speedup and
efficiency of algorithm APACA and the effectiveness of our adaptive strategies.

References:
[1] Dorigo M, Maniezzo V, Colomi A. The ant system: Optimization by a colony of cooperating agents. |EEE Trans. on Systems, Man,
and Cybernetics (Part B), 1996,26(1):29-41.
[2] Dorigo M, Gambardella LM. Ant colony system: A cooperative learning approach to the traveling salesman problem. |EEE Trans.
on Evolutionary Computation, 1997,1(1):53-66.
[3] Dorigo M, GambardellaLM. Ant colonies for the traveling salesman problem. BioSystems, 1997,43(2):73-81.
[4] Gambardella LM, Taillard E, Dorigo M. Ant colonies for the quadratic assignment problem. Journal of the Operational Research
Society, 1999,50:167-176.
[5] Korosec P, Silc J, Robic B. Solving the mesh-partitioning problem with an ant-colony algorithm. Parallel Computing, 2004,30:
785-801.
[6] Shmygelska A, Hoos HH. An improved ant colony optimization algorithm for the 2D HP protein folding problem. In: Yang X,
Chaib-Draa B, eds. Proc. of the 16th Canadian Conf. on Artificial Intelligence. LNCS 2671, Springer-Verlag, 2003. 400-417.
[7] Holden N, Freitas AA. Web page classification with an ant colony algorithm. In: Yao X, et al., eds. Proc. of the 8th.Int’l Conf. on
Parallel Problem Solving from Nature. Birmingham: Springer-Verlag, 2004. 18-22.
[8] Moss JD, Johnson CG. An ant colony algorithm for multiple sequence alignment in bioinformatics. In: Pearson DW, et al., eds.
Artificial Neural Networks and Genetic Algorithms. Springer-Verlag, 2003. 182-186.
[9] Ando S, IbaH. Ant algorithm for construction of evolutionary tree. In: Langdon WB, ed. Proc. of the Genetic and Evolutionary
Computation Conf. New Y ork, 2002. 1552—1557.
[10] Maniezzo V, Carbonaro A. An ANTS heuristic for the frequency assignment problem. Future Generation Computer Systems, 2000,
16(6):927-935.
[11] Di Caro G, Dorigo M. AntNet: A mobile agents approach for adaptive routing. Technical Report, IRIDIA/97-12, Belgium:
Universit Libre de Bruxelles, 1997.
[12] Schoonderwoerd R, Holland O, Bruten J. Ant-Like agents for load balancing in telecommunications networks. In: Johnson WL, et
al., eds. Proc. of the 1st Int’l Conf. on Autonomous Agents. Marina del Rey: ACM Press, 1997. 209-216.
[13] Holland OE, Melhuish C. Stigmergy, Self-organization, and Sorting in Collective Robotics. Artificial Life 5, 1999. 173-202.

© rhiEBRER

http:/ www. jos. org. cn




624 Journal of Software Vol.18, No.3, March 2007

[14] Bullnheimer B, Kotsis G, Steauss C. Parallelization strategies for the ant system. High Performance and Algorithms and Software
in Nonlinear Optimization, Applied Optimization, 1998,24:87-100.

[15] Talbi EG, Roux O, Fonlupt C, Robilard D. Parallel ant colonies for the quadratic assignment problem. Future Generation Computer
Systems, 2001,17:441-449.

[16] Piriyakumar D, Levi P. A new approach to exploiting parallelism in ant colony algorithm. In: Stone P, ed. Proc. of the Int’| Symp.
on Micromechatronics and Human Science. 2002. 237-243.

[17] Randal M, LewisA. A parallel implementation of ant colony algorithm. Parallel and Distributed Computing, 2002,62:1421-1432.

[18] Blum C, Dorigo M. The hyper-cube framework for ant colony algorithm. |[EEE Trans. on SMC, 2004,34(2):1161-1172.

[19] Merkle D, Middendorf M. Fast ant colony optimization on runtime Reconfigurable processor arrays. Genetic Programming and
Evolvable Machine, 2002,3(4):345-361.

[20] Chu SC, Roddick JF, Pan JS. Ant colony system with communication strategies. Information Science, 2004,167:63-76.

[21] Tsai CF, Tsai CW, Tseng CC. A new hybrid heuristic approach for solving large traveling salesman problem. Information Science,
2004,166(1-4):67-81.

[22] Middendorf M, Reischle F, Schmeck F. Information exchange in multi colony ant algorithms. In: Rolim JDP, ed. Proc. of the Int’|
Parallel and Distributed Processing Symp. Springer-Verlag, 2000. 645-652.

[23] TSPLIB WebPage. http://www.iwr.uni-heidel berg.de/groups/comopt/software/ TSPLIB95/tsp/

CHEN Ling was born in 1951. He is a
professor and doctoral supervisor at the
Department of Computer Science, Y angzhou
University. His research areas are
bioinformatics and parallel computation.

ZHANG Chun-Fang was born in 1982. She
is a master candidate at the Department of
Computer Science, Yangzhou University.
Her research areas are optimization of
algorithm and parallel computation.

NANNANNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

24 (NDBC2007)

2007 10 19-21
http://www.hainu.edu.cn/ndbc2007/

24 NDBC2007 2007 10 19 —21

2007 4 20
2007 6
2007 6
. http://www.hainu.edu.cn/ndbc200
ndbc2007 @hainu.edu.cn
: 0898-66288382 ( ) 0898-66279141 ( ) 13006002229 ( )
: 0898-66288382
( 570228)

© rhiEpk

Bt FI9TET httpy/ www. jos. org. cn


http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Schmeck:Hartmut.html

	Introduction
	Adaptive Strategies for Choosing Processors to Exchange Information
	The strategy based on fitness
	The strategy based on dissimilarity

	Strategy of Adaptively Adjusting the Time Interval of Information Exchange
	Experimental Results and Analysis
	
	
	Number of



	Conclusion

