ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.18, No.2, February 2007, pp.345-350 http://www.jos.org.cn
DOI: 10.1360/j0s180345 Tel/Fax: +86-10-62562563
© 2007 by Journal of Software. All rights reserved.

Y , 100080)
X , 100049)

Global Timestamp Serialization in Multi-Level Multi-Version DBM S

ZHANG Min***, FENG Deng-Guo'?, XU Zhen?

!(State Key Laboratory of Information Security, Institute of Software, The Chinese Academy of Sciences, Beijing 100080, China)
%(Graduate School, The Chinese Academy of Sciences, Beijing 100049, China)
+ Corresponding author: Phn: +86-10-82612797, Fax: +86-10-62520469, E-mail: mzhang@is.iscas.ac.cn

Zhang M, Feng DG, Xu Z. Global timestamp serialization in multi-level multi-version DBMS. Journal of
Software, 2007,18(2):345-350. http://www.jos.org.cn/1000-9825/18/345.htm

Abstract: The concurrency control mechanism in the multi-level DBMS is required to promise the serializability
of transactions and the multi-level security properties, avoid possible covert channels and the starving problem of
high-level transactions. The multi-level multi-version timestamp ordering mechanisms satisfy these requirements
but may cause transactions read old version data, and the scheduler is required to be a trusted process. This paper
presents a multi-level multi-version global timestamp ordering (MLS _MVGTO) mechanism and the basic global
timestamps generation steps based on the transaction’s snapshot. This paper also presents two improvements
according to the pre-knowledge of the read-only transactions. In addition it can be implemented as a set of untrusted
schedulers. Given the pre-knowledge about transactions' operations, transactions are able to read more recent
version.

Key words: global timestamp; MLS_MVGTO; multi-version; 1 copy serializable (1SR)

(MLS_MVGTO),

.MLS MVGTO , ,
; MLS MVGTO; ; (1SR)
: TP309 A
» Supported by the National Natural Science Foundation of China under Grant N0s.60273027, 60025205 (); the
National High-Tech Research and Development Plan of China under Grant No.2004AA 147070 ((863))

Received 2005-01-26; Accepted 2005-09-05

© hEE

HOFIFFIT hetps/ www. jos. org. cn

346 Journal of Software Vol.18, No.2, February 2007

In a multi-level DBMS, the concurrency control mechanisms are required to promise not only the
serializability of transactions, but also the multi-level security properties. In addition, the scheduler should avoid
possible covert channels and the starving problem of high-level transactions. Considering the centralized
architecture in a single version DB, it is comparably difficult to reconcile the conflict of the seriaizability, the
multi-level security, and the fairness. For instance, the solution given in Ref.[1] may cause the unbounded lock of
high-level transactions; The solution in Ref.[2] partially sacrifices the serializability of high-level transactions. The
approaches in Ref.[3] prevent the conflict by adding extra limitations to transactions, such as the maximum numbers
of the writing transactions and the fixed delay writing time for each transaction, etc.

The concurrency control mechanisms in a multi-version DB is more flexible compared with those in a single
version DB. Unlike multi-version locking mechanismi*®, multi-level multi-version timestamp ordering
mechanism!®®, which is extended from the traditional multi-version timestamp ordering mechanism!®, avoids the
dilemma in a single version database by enabling transactions to read different versions of data. However, as the
price of reconciliation, transactions may have to read the old version data. Another common problem of these
approaches is that all transactions are scheduled by a central scheduler, therefore the scheduler is required to be a
trusted process.

In this paper we present a new multi-level multi-version global timestamp ordering mechanism
(MLS_MVGTO). A MLS_MVGTO scheduler produces 1SR multi version histories according to transactions’ global
timestamp order. It is free from covert channels, and transactions of different security levels have the same privilege
to execute. In addition, the MLS-MVGTO mechanism can be implemented as a set of schedulers which only process
the same level transactions. Given the pre-knowledge about transactions' operations, read-only transactions are able
to read more recent version, which as aresult enables the higher level transactions to read more recent version.

The rest of the paper is organized as follows: Section 1 introduces the MLS_MVGTO mechanism and the
global timestamp generating methods. Section 2 provides two possible improvements on read-only transactions.
Section 3 gives the conclusion and the open questions to be discussed in the future work.

1 TheMulti-Version Global Timestamp Ordering on the MLSDBM S

This paper accepts the basic definitions of transactions and histories in multi-version DB given in Ref.[11], and
the formal expressions are written by Z specification language'”.

1.1 Theglobal timestamp

When transaction T starts, it is assigned with two timestamps: the real timestamp ts(T;) (“timestamp” in short)
and the virtual timestamp vts(T;), which reflects the serialization order of all level transactions. A global timestamp
of atransaction is made up of its timestamp, virtual timestamp, and its security level, as defined below:

Definition 1.1. The global timestamp of a transaction gts(T;) is a three tuple of T;’s virtual timestamp vts(T;),
timestamp ts(T;), and security level L(T,): gts(T;)=(vts(T;),L(T;),ts(Ty)).

The timestamp is required to be unique for al transactions which are in the same security level. The virtual
timestamp may not be unique for each transaction. However, in any cases a global timestamp can uniquely identify
atransaction, and the MLS-MV GTO scheduler processes operations by global timestamp order.

Definition 1.2. the global timestamp order of two transactions T;,T; is defined as follows:
gts(T,) < gts(T;) <> Mis(T,) < MIS(T,) v (Vts(T;) = vis(T;) A L(T) > L(T;)) v (vS(T,) = vts(T,) A L(T,) = L(T,) Ats(T,) < tS(T;)) -

This definition clarifies that the global timestamp order is firstly decided by the virtual timestamp order, then
by security level order (from low to high), finally by the timestamp order.

© PEBSFERSAIIFT hipd/ www. jos. org. cn

347

1.2 TheMLS DBMS properties

In a MLS _DBMS, the operations of all transactions must satisfy the security properties given in the security
model. In the MLS MVGTO mechanism, two additional properties must be satisfied. The MLSMVGTO_SR
Property ensures that the MLS-MVGTO scheduler produce 1SR histories and the Write-Invalidation-Free property
ensures that no covert channel will be introduced.

121 The MLS-MVGTO-SR property

A MLS-MVGTO scheduler produces multi-version history H, which satisfies the MLS-MVGTO-SR Property.
The main characteristics can be formally described into the following sub_properties:

MLSMVGTO-SR.1 VT, T, eT|L(T)=L(T,)ets(T) =ts(T;)) =i=] .

MLSMVGTO-SR.2 VT, eT |wts(T;) <ts(T) .

MLS-MVGTO-SR.3 Vvr[x]eH |i=kegts(T,)> gts(T,) .

MLS-MVGTO-SR.4.1.

VilxJwixle H L) =L Ak # jo gts(T) < gts(T)) v gts(Ty) < ats(T) v (j =1 AR[X] <wi[x]) -
MLSMVGTO-SR.4.2 Vr[x],w,[x]eH |L(T)>L(X) Ak= jegts(T) < gts(T;) v gts(T;) < gts(T,) -
MLSMVGTO-SR.5 Vvr[x]eH|ceHAi=kec <cC .

MLS-MVGTO-SR.1 says that all transactions in the same level must have different timestamps. This implies
that the tuple (L(T;),ts(T;)) can uniquely identify a transaction, therefore gts(T;) is unique. MLS-MVGTO-SR.2 says
that the virtual timestamp of any level transaction is always no earlier than its timestamp. MLS-MVGTO-SR.3 says
that T; only reads a version written by T, when gts(T,) is less than gts(T;). MLS-MVGTO-SR.4 says that when the
scheduler processes a read ri[X], it returns the version x, written by T, which has the largest timestamp less than
gts(T;). This property implies that if the scheduler receives a late write operation w;[x;] after it outputs a read down
operation ri[x], and gts(Ty)<gts(T;)<gts(T;). Then the scheduler will reject wj[x;] and abort T;. We call this the write
invalidation, wj[x] is the late write and ri[x] invalidates wij[x]. MLS-MVGTO-SR.4.1 describes the same level read
operations, while MLS-MVGTO-SR.4.2 is for the read-down operations. MLS-MVGTO-SR.5 says that the history
H isrecoverable.

Theorem 1.1. Each history H produced by aMLS-MVGTO scheduler is 1SR (We omit the proof here).

1.2.2 The Write-Invalidation-Free property

MLS-MVGTO-SR.4 promises 1SR history, but the write invalidation may cause covert channels. To avoid the
covert channel, aMLS_MVGTO scheduler must also hold the following Write-Invalidation-Free property.

Definition 1.3. Write-Invalidation-Free Property: Transaction T; satisfies the Write-Invalidation-Free
Property, if and only if for its each read-down operations ri[x], there is NO transaction T; that satisfies: wi[x] € T;a
rilxJ e HAL(T;)=L(TW)<L(T;)Agts(Ti)<gts(T;)<gts(T;). If all transactions in the transaction set T satisfies this property,
then we say T satisfies the Write-Invalidation-Free Property.

1.3 Thebasic global timestamp generation steps

The implementation of aMLS MVGTO scheduler which satisfies the above two properties requires a concrete
global transaction timestamp generating method. Because L(T;) and ts(T;) of T; are fixed, this section presents a
basic vts(T;) generation function that satisfies above two properties.

vts(T;) is generated based on a T;'s snapshot function. Function Snap(T;,l) records the transactions at level |
which is active (transactions are started, but not committed yet) when T; starts, that is:

{T,:TIL(T)) =1 Ats(T,) <ts(T,) < end _time(T)}, 1 < L(T)
Snapﬁ"l):{@, 1>L(T)

© DEEREBAAAIFUN bt/ www. jos. org. cn

348 Journal of Software Vol.18, No.2, February 2007

T;’'s complete snapshot is: Siap(T)= | J Shap(T,.l).

0<I<L(T)

The basic global timestamp generating steps is described as follows:

(1) When T, starts, tS(T;) is generated and assigned to T;.

(2) Snap(T;) is calculated and assigned to T;. The function is defined above.

(3) Compute the smallest virtual timestamp of Snap(T;) by the MVY() function which is defined as follows:

MVS(T) ={T, T |us(T,)} VT eT|evts(T;)>MVS(T).

(4) vts(T;) is defined as follows:

ws(r) - {50 ent)-2
Y min{ts(T;), MVS(Shap(T))}, Snap(Ty) # &

(5) The final global timestamp of T; is: gts(T;)=(vts(T;),L(T;),ts(T))-

Step four implies that vts(T;)<ts(T;). All other MLS MVGTO_SR properties are naturally satisfied by the
definition of the scheduler. With this basic function, a transaction is scheduled before any active lower level
transactions when it starts. It can be proved that this virtual timestamp function implies the following lemmas(We
omit the proof here):

Lemma 1.1 VT, T, eT |L(T;) = L(T;) o ts(T)) < ts(T;) = gts(T;) < gts(T}) .

Lemma 1.2. A MLS-MVGTO scheduler that uses vts() function satisfies Invalidation-Write-Free property.

Lemma 1.1 means that in any security level, the global timestamp order of transactions are the same as their
timestamp order. Therefore the scheduler can process the same level transactions based on their timestamp only. By
Lemma 1.2, we can say that MLS-MVGTO scheduler will not introduce any covert channel.

According to Lemma 1.1, for the same level read operations, each scheduler of one security level performs as
the traditional MV TO scheduler does, while for read-down operations, the scheduler use global timestamp instead.
Since these schedulers only need to get information from lower level schedulers and this type of access does not
violate the security property, they need not to be implemented as trusted code.

2 Improved Virtual Timestamp Functions

The above steps could not prevent a transaction read old version data, because it is too strict to assume that all
active lower level transactions may have late write operations. Given more pre-knowledge about transactions'
operations, a transaction has a virtual timestamp much close to its timestamp. In this section, we propose two types
of improvements based on read-only transactions, which still hold the above two properties. Read-only transactions
are one special type of transactions, and T; is called a read only transaction if and only if its write set is empty
WE(T;)=.

2.1 Given the set of levels

The first improvement is based on the assumption that a read-only transaction’s read-down level set is known.

Suppose Level S(T;) returns the set of lower levels that a read-only transaction T; may read from:
Levels(T.)={l:L|r[xX]eT, AL(X) =1 Al <L(T,)}.

T, has no late writes, therefore it can be removed from higher level transactions' snapshots. That is:
{T,:TIL(T,) =1 AWS(T,) = D ats(T;) <ts(T;) < end _time(T;)}, | <L(T)
3, I>L(T)

It is obvious that any non-empty set Levels(T;) satisfies VI e Levels(T,) |l < L(T;) and there are no late write
operations in other security levels. Therefore the snapshot function of read only transactions Shap_RO(T,,lI) can

be further modified as:

Sﬂap'(TiJ)={

© DEEREBAAAIFUN bt/ www. jos. org. cn

349

Shap (T.,1), | eLevels(T)

Snap_RO(T;,1) = .
2 _RO(T.1) {@, otherwise

The virtual timestamp function is then modified as:

min{ts(Ti), MVS(Shap' (Ti))}, WS(Ti) # & A Snap'(Ti) = &
vts(Ti) =< min{ts(Ti),MVS(Shap _RO(Ti))}, WS(Ti) = A Shap_RO(Ti) = .
ts(Ti), otherwise

The global timestamp of transaction T; is: gts(T;)=(vts(T;),L(T;),ts(T;)).

For any T; and | there isSnap_ RO(T;,l) = Snap'(T,,l) , therefore Snap_ RO(T;) < Shap'(T;) . Then according to
the virtual timestamp definition, wvts_ RO(Ti) > wvts(Ti) . This means that for a read only transaction T;, it is possible
to have amore “recent” virtual timestamp compared with the basic virtual timestamp function.

Here Lemma 1.1 does not hold any more, the global timestamp order of two same level transactions may differ
from their timestamp order. In stead, the following Lemma 2.1 is true (We omit the proof here):

Lemma2.l. L(T)=L(T,) Ats(T) <ts(T,) AWS(T,) # D AWS(T,) = & = gts(T;) < gts(T;) .

Lemma 2.1 means that in any security level, the global timestamp order of NOT read only transactions are the
same as their timestamp order. If we remove all read-only transactions from the transaction set T , then Lemma 3.1
equalsto Lemma1.1. Both the MLS-MVGTO-SR property and the Write-Invalidation-Free property are satisfied.

However there may be late write operation in the same level. This improvement enhances the chance of the
abortion of atransaction T; by other same level transactions Tj(L(T;)=L(T})).

2.2 Giventheread set and write set

Moreover, if the read data set and write data set of any transaction are available, the virtual timestamp function
can be further modified to be more precisely close to its timestamp. Let us suppose when transaction T; starts, it
reports two data sets to the scheduler, the read-down set RDS(T;), a set of data items x which is read by
Ti: Xxe RDS(T,) < r[X] e T, AL(X) < L(T)) , and the write set WYT;), a set of data items x which T, writes
on: XxeWS(T,)) @ w[X] €T, AL(X)=L(T,) .

The Snap”() for read-only transaction is slightly different from the basic snapshot function:

Shap” (. :{{Tj TIL(T) =1 AWS(T;) " RDS(T}) # @ ats(T,) <ts(T,) <end _time(T,)}, | e Le\/fels('l'i).
J, otherwise

The difference between Snap”(T;,l) and Shap_RO(T;,1) is that the predicate WS(T,;) n RDS(T;) # & takes
place of WS(T;) = & . This change indicates that for any T, and| there isSnap"(T;,l) < Shap_RO(T;,l) , therefore
Shap"(T;) < Snap_RO(T,) . This means that for a read only transaction T;, it is possible to have a more
“recent” virtual timestamp.

The snapshot function for read-write transactions is still Snap”(T;,l). And the virtual timestamp function is
expressed as:

min{ts(Ti), MVS(Shap' (Ti))}, WS(Ti) # 3 A Snap'(Ti) # D
vis(Ti) = s min{ts(Ti), MVS(Snap" (Ti))}, WS(T) =D A Shap"(T) = .
ts(Ti), otherwise

In this improvement, Lemma 1.1 is satisfied. This function also satisfies the MLS-MVGTO-SR property and
the Write-Invalidation-Free property.

3 Conclusions

In this paper we present the concept of global timestamp and a multi-level multi-version global timestamp

© DEEREBAAAIFUN bt/ www. jos. org. cn

350 Journal of Software Vol.18, No.2, February 2007

ordering (MLS_MVGTO) mechanism. It can be proved that all history produced by a MLS MVGTO scheduler is
1SR, and it is free from covert channels. This approach does not need a global trusted scheduler. Instead, it can be
built on the enhanced untrusted multi-version schedulers. Therefore we also propose two improvements which
enable the transaction to read a more recent version. However some problems remain open in this approach, and one
of them is the storage problem because those old versions cannot be erased from system in time. Thisis the target of
our future work.

References:

[1] McDermott J, Jgjodia S. Orange locking: Channel-Free database concurrency control via locking. In: Thuraisingham BM,
Landwehr CE, eds. Database Security, VI: Status and Prospects. New Y ork: Elsevier Science, 1993. 267—-284.

[2] Bertino E, Jajodia S, Mancini L, Ray |. Advanced trans. Proc. in multilevel secure file stores. |IEEE Trans. on Knowledge and Data
Engineering, 1998,10(1):120-135.

[3] Jajodia S, Mancini LV, Setia S. A fair locking protocol for multilevel secure databases. In: Proc. of the 11th Computer Security
Foundations Workshop. Washington: | EEE Computer Society Press, 1998. 168-178.

[4] Mancini LV, Ray I. Secure concurrency control in MLS databases with two versions of data. In: Bertino E, Kurth H, Martella G,
Montolivo E, eds. Proc. of the 4th European Symp. on Research in Computer Security (ESORICS). Springer-Verlag, 1996.
304-323.

[5] Pa S. A locking protocol for multilevel secure database using two committed versions. In: Proc. of the 10th Annual Conf. on
Computer Assurance, COMPASS' 95. 1995. 197-210.

[6] Keefe TF, Tsai WT. Multiversion concurrency control for multilevel secure database systems. In: Proc. of the IEEE Symp. on
Security and Privacy. 1990. 369-383.

[71 Keefe TF, Tsat WT. A multiversion transaction scheduler for centralized multilevel secure database systems. In: Proc. of the 1st
High-Assurance Systems Engineering Workshop (HASE’ 96). Washington: |EEE Computer Society, 1996. 206—-213.

[8] Ammann P, Jacckle F, Jajodia S. Concurrency control in secure multilevel databases via a two-snapshot algorithm. Journal of
Computer Security, 1995,3(3):87-113.

[9] Bernstein PA, Hadzilacos V, Goodman N. Concurrency Control and Recovery in Database Systems. Massachussetts:
Addison-Wesley, 1987.

[10] Woodcock J, Davies J. Using Z Specification, Refinement, and Proof. Hertfordshire: Prentice Hall Europe, 1996.

ZHANG Min was born in 1975. She is a
Ph.D. candidate and research assistant at
the Institute of Software, the Chinese
Academy of Sciences. Her current research
areas are mobile agent and database
security.

FENG Deng-Guo was born in 1965. He is
a professor and doctoral supervisor of the
Institute of Software, the Chinese Academy
of Sciences, and a CCF senior member. His
research areas are cryptography theory and

. information security.

XU Zhen was born in 1976. His current
research areas are database security and
system security.

S https// www. jos. org. cn

	The Multi-Version Global Timestamp Ordering on the MLS DBMS
	The global timestamp
	The MLS_DBMS properties
	The MLS-MVGTO-SR property
	The Write-Invalidation-Free property

	The basic global timestamp generation steps

	Improved Virtual Timestamp Functions
	Given the set of levels
	Given the read set and write set

	Conclusions

