
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.18, No.2, February 2007, pp.345−350 http://www.jos.org.cn
DOI: 10.1360/jos180345 Tel/Fax: +86-10-62562563
 2007 by Journal of Software. All rights reserved.

多级多版本数据库管理系统全局串行化
∗

张 敏 1,2+, 冯登国 1,2, 徐 震 1,2

1(中国科学院 软件研究所 信息安全国家重点实验室,北京 100080)
2(中国科学院 研究生院,北京 100049)

Global Timestamp Serialization in Multi-Level Multi-Version DBMS

ZHANG Min1,2+, FENG Deng-Guo1,2, XU Zhen1,2

1(State Key Laboratory of Information Security, Institute of Software, The Chinese Academy of Sciences, Beijing 100080, China)
2(Graduate School, The Chinese Academy of Sciences, Beijing 100049, China)

+ Corresponding author: Phn: +86-10-82612797, Fax: +86-10-62520469, E-mail: mzhang@is.iscas.ac.cn

Zhang M, Feng DG, Xu Z. Global timestamp serialization in multi-level multi-version DBMS. Journal of
Software, 2007,18(2):345−350. http://www.jos.org.cn/1000-9825/18/345.htm

Abstract: The concurrency control mechanism in the multi-level DBMS is required to promise the serializability
of transactions and the multi-level security properties, avoid possible covert channels and the starving problem of
high-level transactions. The multi-level multi-version timestamp ordering mechanisms satisfy these requirements
but may cause transactions read old version data, and the scheduler is required to be a trusted process. This paper
presents a multi-level multi-version global timestamp ordering (MLS_MVGTO) mechanism and the basic global
timestamps generation steps based on the transaction’s snapshot. This paper also presents two improvements
according to the pre-knowledge of the read-only transactions. In addition it can be implemented as a set of untrusted
schedulers. Given the pre-knowledge about transactions’ operations, transactions are able to read more recent
version.
Key words: global timestamp; MLS_MVGTO; multi-version; 1 copy serializable (1SR)

摘 要: 多级调度应该保证事务历史可串行化,满足多级安全特性,不会引入隐通道,并保证高级别事务不会因
为无限等待而“饿死”.与其他多级数据管理系统调度机制相比,多级多版本时戳调度机制满足上述要求,但该机
制存在两个问题,一是事务可能读旧版本,二是要求调度器是可信进程.提出一种多级多版本全局时戳调度机制
(MLS_MVGTO),以及依据事务快照生成其全局时戳的基本步骤 .给出了预知只读事务信息时的两种改进方
法.MLS_MVGTO 机制生成的事务历史可串行化,不引入隐通道等,并且该方法避免引入一个全局可信的调度
器,并通过对只读事务的深入分析,允许事务读新版本.
关键词: 全局时戳;多级多版本全局时戳排序MLS_MVGTO;多版本;单版本可串行化(1SR)
中图法分类号: TP309 文献标识码: A

∗ Supported by the National Natural Science Foundation of China under Grant Nos.60273027, 60025205 (国家自然科学基金); the

National High-Tech Research and Development Plan of China under Grant No.2004AA147070 (国家高技术研究发展计划(863))
Received 2005-01-26; Accepted 2005-09-05

 346 Journal of Software 软件学报 Vol.18, No.2, February 2007

j

In a multi-level DBMS, the concurrency control mechanisms are required to promise not only the
serializability of transactions, but also the multi-level security properties. In addition, the scheduler should avoid
possible covert channels and the starving problem of high-level transactions. Considering the centralized
architecture in a single version DB, it is comparably difficult to reconcile the conflict of the serializability, the
multi-level security, and the fairness. For instance, the solution given in Ref.[1] may cause the unbounded lock of
high-level transactions; The solution in Ref.[2] partially sacrifices the serializability of high-level transactions. The
approaches in Ref.[3] prevent the conflict by adding extra limitations to transactions, such as the maximum numbers
of the writing transactions and the fixed delay writing time for each transaction, etc.

The concurrency control mechanisms in a multi-version DB is more flexible compared with those in a single
version DB. Unlike multi-version locking mechanism[4,5], multi-level multi-version timestamp ordering
mechanism[6−8], which is extended from the traditional multi-version timestamp ordering mechanism[9], avoids the
dilemma in a single version database by enabling transactions to read different versions of data. However, as the
price of reconciliation, transactions may have to read the old version data. Another common problem of these
approaches is that all transactions are scheduled by a central scheduler, therefore the scheduler is required to be a
trusted process.

In this paper we present a new multi-level multi-version global timestamp ordering mechanism
(MLS_MVGTO). A MLS_MVGTO scheduler produces 1SR multi version histories according to transactions’ global
timestamp order. It is free from covert channels, and transactions of different security levels have the same privilege
to execute. In addition, the MLS-MVGTO mechanism can be implemented as a set of schedulers which only process
the same level transactions. Given the pre-knowledge about transactions’ operations, read-only transactions are able
to read more recent version, which as a result enables the higher level transactions to read more recent version.

The rest of the paper is organized as follows: Section 1 introduces the MLS_MVGTO mechanism and the
global timestamp generating methods. Section 2 provides two possible improvements on read-only transactions.
Section 3 gives the conclusion and the open questions to be discussed in the future work.

1 The Multi-Version Global Timestamp Ordering on the MLS DBMS

This paper accepts the basic definitions of transactions and histories in multi-version DB given in Ref.[11], and
the formal expressions are written by Z specification language[10].

1.1 The global timestamp

When transaction T starts, it is assigned with two timestamps: the real timestamp ts(Ti) (“timestamp” in short)
and the virtual timestamp vts(Ti), which reflects the serialization order of all level transactions. A global timestamp
of a transaction is made up of its timestamp, virtual timestamp, and its security level, as defined below:

Definition 1.1. The global timestamp of a transaction gts(Ti) is a three tuple of Ti’s virtual timestamp vts(Ti),
timestamp ts(Ti), and security level L(Ti): gts(Ti)=(vts(Ti),L(Ti),ts(Ti)).

The timestamp is required to be unique for all transactions which are in the same security level. The virtual
timestamp may not be unique for each transaction. However, in any cases a global timestamp can uniquely identify
a transaction, and the MLS-MVGTO scheduler processes operations by global timestamp order.

Definition 1.2. the global timestamp order of two transactions Ti,Tj is defined as follows:
() () () () (() () () ()) (() () () () () ())i j i j i j i j i j i j igts T gts T vts T vts T vts T vts T L T L T vts T vts T L T L T ts T ts T< ⇔ < ∨ = ∧ > ∨ = ∧ = ∧ < .

This definition clarifies that the global timestamp order is firstly decided by the virtual timestamp order, then
by security level order (from low to high), finally by the timestamp order.

 张敏 等:多级多版本数据库管理系统全局串行化 347

1.2 The MLS_DBMS properties

In a MLS_DBMS, the operations of all transactions must satisfy the security properties given in the security
model. In the MLS_MVGTO mechanism, two additional properties must be satisfied. The MLS-MVGTO_SR
Property ensures that the MLS-MVGTO scheduler produce 1SR histories and the Write-Invalidation-Free property
ensures that no covert channel will be introduced.
1.2.1 The MLS-MVGTO-SR property

A MLS-MVGTO scheduler produces multi-version history H, which satisfies the MLS-MVGTO-SR Property.
The main characteristics can be formally described into the following sub_properties:

MLS-MVGTO-SR.1 , | () () () ()i j i j i jT T T L T L T ts T ts T i j∀ ∈ = • = ⇒ =

i

.

MLS-MVGTO-SR.2 | () ()i iT T vts T ts T∀ ∈ ≤ .
MLS-MVGTO-SR.3 [] | () ()i k i kr x H i k gts T gts T∀ ∈ ≠ • > .
MLS-MVGTO-SR.4.1.

[], [] | () () () () () () ([] [])i k j j i i j j k i k j jr x w x H L T L x k j gts T gts T gts T gts T j i r x w x∀ ∈ = ∧ ≠ • < ∨ < ∨ = ∧ < .

MLS-MVGTO-SR.4.2 [], [] | () () () () () ()i k j j i i j j kr x w x H L T L x k j gts T gts T gts T gts T∀ ∈ > ∧ ≠ • < ∨ < .

MLS-MVGTO-SR.5 [] |i k i k ir x H c H i k c c∀ ∈ ∈ ∧ ≠ • < .

MLS-MVGTO-SR.1 says that all transactions in the same level must have different timestamps. This implies
that the tuple (L(Ti),ts(Ti)) can uniquely identify a transaction, therefore gts(Ti) is unique. MLS-MVGTO-SR.2 says
that the virtual timestamp of any level transaction is always no earlier than its timestamp. MLS-MVGTO-SR.3 says
that Ti only reads a version written by Tk when gts(Tk) is less than gts(Ti). MLS-MVGTO-SR.4 says that when the
scheduler processes a read ri[x], it returns the version xk written by Tk which has the largest timestamp less than
gts(Ti). This property implies that if the scheduler receives a late write operation wj[xj] after it outputs a read down
operation ri[xk], and gts(Tk)<gts(Tj)<gts(Ti). Then the scheduler will reject wj[xj] and abort Tj. We call this the write
invalidation, wj[xj] is the late write and ri[xk] invalidates wj[xj]. MLS-MVGTO-SR.4.1 describes the same level read
operations, while MLS-MVGTO-SR.4.2 is for the read-down operations. MLS-MVGTO-SR.5 says that the history
H is recoverable.

Theorem 1.1. Each history H produced by a MLS-MVGTO scheduler is 1SR (We omit the proof here).

1.2.2 The Write-Invalidation-Free property
MLS-MVGTO-SR.4 promises 1SR history, but the write invalidation may cause covert channels. To avoid the

covert channel, a MLS_MVGTO scheduler must also hold the following Write-Invalidation-Free property.
Definition 1.3. Write-Invalidation-Free Property: Transaction Ti satisfies the Write-Invalidation-Free

Property, if and only if for its each read-down operations ri[xk], there is NO transaction Tj that satisfies: wj[xj]∈Tj∧
ri[xk]∈H∧L(Tj)=L(Tk)<L(Ti)∧gts(Tk)<gts(Tj)<gts(Ti). If all transactions in the transaction set T satisfies this property,
then we say T satisfies the Write-Invalidation-Free Property.

1.3 The basic global timestamp generation steps

The implementation of a MLS_MVGTO scheduler which satisfies the above two properties requires a concrete
global transaction timestamp generating method. Because L(Ti) and ts(Ti) of Ti are fixed, this section presents a
basic vts(Ti) generation function that satisfies above two properties.

vts(Ti) is generated based on a Ti’s snapshot function. Function Snap(Ti,l) records the transactions at level l
which is active (transactions are started, but not committed yet) when Ti starts, that is:

{ : | () () () _ ()}, ()
(,)

, ()
j j j i j

i
i

T T L T l ts T ts T end time T l L T
Snap T l

l L T

= ∧ < < <= 
∅ ≥

i .

 348 Journal of Software 软件学报 Vol.18, No.2, February 2007

Ti’s complete snapshot is: .

0 ()

() (,)
i

i i
l L T

Snap T Snap T l
< <

= U

The basic global timestamp generating steps is described as follows:
(1) When Ti starts, ts(Ti) is generated and assigned to Ti.
(2) Snap(Ti) is calculated and assigned to Ti. The function is defined above.
(3) Compute the smallest virtual timestamp of Snap(Ti) by the MVS() function which is defined as follows:

() { | ()}k kMVS T T T vts T= ∈ | () (j jT T vts T MVS T)∀ ∈ • ≥ .

(4) vts(Ti) is defined as follows:

.)())},((),(min{
)(),()(





∅≠
∅==

iii

ii
i TSnapTSnapMVSTts

TSnapTtsTvts

(5) The final global timestamp of Ti is: gts(Ti)=(vts(Ti),L(Ti),ts(Ti)).
Step four implies that vts(Ti)≤ts(Ti). All other MLS_MVGTO_SR properties are naturally satisfied by the

definition of the scheduler. With this basic function, a transaction is scheduled before any active lower level
transactions when it starts. It can be proved that this virtual timestamp function implies the following lemmas(We
omit the proof here):

Lemma 1.1.∀ ∈ . , | () () () () () (i j i j i j i jT T T L T L T ts T ts T gts T gts T= • < ⇒ <)

i

Lemma 1.2. A MLS-MVGTO scheduler that uses vts() function satisfies Invalidation-Write-Free property.
Lemma 1.1 means that in any security level, the global timestamp order of transactions are the same as their

timestamp order. Therefore the scheduler can process the same level transactions based on their timestamp only. By
Lemma 1.2, we can say that MLS-MVGTO scheduler will not introduce any covert channel.

According to Lemma 1.1, for the same level read operations, each scheduler of one security level performs as
the traditional MVTO scheduler does, while for read-down operations, the scheduler use global timestamp instead.
Since these schedulers only need to get information from lower level schedulers and this type of access does not
violate the security property, they need not to be implemented as trusted code.

2 Improved Virtual Timestamp Functions

The above steps could not prevent a transaction read old version data, because it is too strict to assume that all
active lower level transactions may have late write operations. Given more pre-knowledge about transactions’
operations, a transaction has a virtual timestamp much close to its timestamp. In this section, we propose two types
of improvements based on read-only transactions, which still hold the above two properties. Read-only transactions
are one special type of transactions, and Ti is called a read only transaction if and only if its write set is empty
WS(Ti)=∅.

2.1 Given the set of levels

The first improvement is based on the assumption that a read-only transaction’s read-down level set is known.
Suppose Levels(Ti) returns the set of lower levels that a read-only transaction Ti may read from:

() { : | [] () ()}i i iLevels T l L r x T L x l l L T= ∈ ∧ = ∧ < .

Ti has no late writes, therefore it can be removed from higher level transactions’ snapshots. That is:
{ : | () () () () _ ()}, ()

(,)
, ()
j j j j i j

i
i

T T L T l WS T ts T ts T end time T l L T
Snap' T l

l L T

= ∧ ≠ ∅ ∧ < < <= 
∅ ≥

i

i

.

It is obvious that any non-empty set Levels(Ti) satisfies () | ()il Levels T l L T∀ ∈ < and there are no late write
operations in other security levels. Therefore the snapshot function of read only transactions _ (,)iSnap RO T l can

be further modified as:

 张敏 等:多级多版本数据库管理系统全局串行化 349

(,), ()

_ (,)
, otherwise

i i
i

Snap' T l l Levels T
Snap RO T l

∈
= ∅

.

The virtual timestamp function is then modified as:
min{ (), (())}, () ()

() min{ (), (_ ())}, () _ ()
(), otherwise

i i i i

i i i i i

i

ts T MVS Snap' T WS T Snap' T
vts T ts T MVS Snap RO T WS T Snap RO T

ts T

≠ ∅ ∧ ≠ ∅
= = ∅ ∧ ≠ ∅



.

The global timestamp of transaction Ti is: gts(Ti)=(vts(Ti),L(Ti),ts(Ti)).
For any Ti and l there is _ (,) (,)iSnap RO T l Snap T l′⊆ i , therefore _ () ()iSnap RO T Snap T′⊆ i . Then according to

the virtual timestamp definition, _ () ()i ivts RO T vts T≥ . This means that for a read only transaction Ti, it is possible

to have a more “recent” virtual timestamp compared with the basic virtual timestamp function.
Here Lemma 1.1 does not hold any more, the global timestamp order of two same level transactions may differ

from their timestamp order. In stead, the following Lemma 2.1 is true (We omit the proof here):
Lemma 2.1. () () () () () () () ()i j i j i j i jL T L T ts T ts T WS T WS T gts T gts T= ∧ < ∧ ≠ ∅ ∧ ≠ ∅⇒ ≤ .

Lemma 2.1 means that in any security level, the global timestamp order of NOT read only transactions are the
same as their timestamp order. If we remove all read-only transactions from the transaction set T , then Lemma 3.1
equals to Lemma 1.1. Both the MLS-MVGTO-SR property and the Write-Invalidation-Free property are satisfied.

However there may be late write operation in the same level. This improvement enhances the chance of the
abortion of a transaction Ti by other same level transactions Tj(L(Ti)=L(Tj)).

2.2 Given the read set and write set

Moreover, if the read data set and write data set of any transaction are available, the virtual timestamp function
can be further modified to be more precisely close to its timestamp. Let us suppose when transaction Ti starts, it
reports two data sets to the scheduler, the read-down set RDS(Ti), a set of data items x which is read by
Ti: () [] () ()i i i ix RDS T r x T L x L T∈ ⇔ ∈ ∧ <

() [] () ()i i i

, and the write set WS(Ti), a set of data items x which Ti writes
on: ix WS T w x T L x L T∈ ⇔ ∈ ∧ = .

The Snap″() for read-only transaction is slightly different from the basic snapshot function:
{ : | () () () () () _ ()}, ()

(,)
,
j j j i j i j

i

T T L T l WS T RDS T ts T ts T end time T l Levels T
Snap'' T l

= ∧ ∩ ≠ ∅ ∧ < < ∈
=

∅ otherwise




i .

The difference between Snap″(Ti,l) and _ (,)iSnap RO T l

i

is that the predicate WS takes

place of WS . This change indicates that for any T and there is , therefore

. This means that for a read only transaction T

() ()j iT RDS T∩

_ (,)i iSnap RO T l⊆

≠ ∅

i

i

()jT ≠ ∅

() _i Snap RO⊆

l (,)Snap'' T l

()Snap'' T T i, it is possible to have a more

“recent” virtual timestamp.
The snapshot function for read-write transactions is still Snap″(Ti,l). And the virtual timestamp function is

expressed as:
min{ (), (())}, () ()

() min{ (), (())}, () ()
(), otherwise

i i i

i i i i i

i

ts T MVS Snap' T WS T Snap' T
vts T ts T MVS Snap'' T WS T Snap'' T

ts T

≠ ∅ ∧ ≠ ∅
= = ∅ ∧ ≠ ∅



.

In this improvement, Lemma 1.1 is satisfied. This function also satisfies the MLS-MVGTO-SR property and
the Write-Invalidation-Free property.

3 Conclusions
In this paper we present the concept of global timestamp and a multi-level multi-version global timestamp

 350 Journal of Software 软件学报 Vol.18, No.2, February 2007

ordering (MLS_MVGTO) mechanism. It can be proved that all history produced by a MLS_MVGTO scheduler is
1SR, and it is free from covert channels. This approach does not need a global trusted scheduler. Instead, it can be
built on the enhanced untrusted multi-version schedulers. Therefore we also propose two improvements which
enable the transaction to read a more recent version. However some problems remain open in this approach, and one
of them is the storage problem because those old versions cannot be erased from system in time. This is the target of
our future work.

References:
[1] McDermott J, Jajodia S. Orange locking: Channel-Free database concurrency control via locking. In: Thuraisingham BM,

Landwehr CE, eds. Database Security, VI: Status and Prospects. New York: Elsevier Science, 1993. 267−284.

[2] Bertino E, Jajodia S, Mancini L, Ray I. Advanced trans. Proc. in multilevel secure file stores. IEEE Trans. on Knowledge and Data

Engineering, 1998,10(1):120−135.

[3] Jajodia S, Mancini LV, Setia S. A fair locking protocol for multilevel secure databases. In: Proc. of the 11th Computer Security

Foundations Workshop. Washington: IEEE Computer Society Press, 1998. 168−178.

[4] Mancini LV, Ray I. Secure concurrency control in MLS databases with two versions of data. In: Bertino E, Kurth H, Martella G,

Montolivo E, eds. Proc. of the 4th European Symp. on Research in Computer Security (ESORICS). Springer-Verlag, 1996.

304−323.

[5] Pal S. A locking protocol for multilevel secure database using two committed versions. In: Proc. of the 10th Annual Conf. on

Computer Assurance, COMPASS’95. 1995. 197−210.

[6] Keefe TF, Tsai WT. Multiversion concurrency control for multilevel secure database systems. In: Proc. of the IEEE Symp. on

Security and Privacy. 1990. 369−383.

[7] Keefe TF, Tsai WT. A multiversion transaction scheduler for centralized multilevel secure database systems. In: Proc. of the 1st

High-Assurance Systems Engineering Workshop (HASE’96). Washington: IEEE Computer Society, 1996. 206−213.

[8] Ammann P, Jacckle F, Jajodia S. Concurrency control in secure multilevel databases via a two-snapshot algorithm. Journal of

Computer Security, 1995,3(3):87−113.

[9] Bernstein PA, Hadzilacos V, Goodman N. Concurrency Control and Recovery in Database Systems. Massachussetts:

Addison-Wesley, 1987.

[10] Woodcock J, Davies J. Using Z Specification, Refinement, and Proof. Hertfordshire: Prentice Hall Europe, 1996.

ZHANG Min was born in 1975. She is a
Ph.D. candidate and research assistant at
the Institute of Software, the Chinese
Academy of Sciences. Her current research
areas are mobile agent and database
security.

 XU Zhen was born in 1976. His current
research areas are database security and
system security.

FENG Deng-Guo was born in 1965. He is
a professor and doctoral supervisor of the
Institute of Software, the Chinese Academy
of Sciences, and a CCF senior member. His
research areas are cryptography theory and
information security.

	The Multi-Version Global Timestamp Ordering on the MLS DBMS
	The global timestamp
	The MLS_DBMS properties
	The MLS-MVGTO-SR property
	The Write-Invalidation-Free property

	The basic global timestamp generation steps

	Improved Virtual Timestamp Functions
	Given the set of levels
	Given the read set and write set

	Conclusions

