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Abstract: For arbitrary triangular control meshes, a surface algorithm based-on bivariate box-spline is devel oped.
Bivariate 3-direction is a triangulation with the least directions. Box spline built on it is widely applied in CAGD.
Its standard surface algorithm is only for normal control mesh in which every point has valence 6. Starting with
bivariate 3-directional quartic box-splines, the paper proposes an algorithm for arbitrary triangular control meshes.
The analysis of its properties especially continuity are presented in detail. The constructed surfaces by the algorithm
are convex preserving, and they are piecewise C'. The algorithm can be easily applied for globa or local
interpolation, which is indispensable in 3D surface reconstruction from scattered points.
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1 Introduction

Triangular splines were first considered by Sabin in 1977, and later they were found to be ‘ box-splines ™. With
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the requirements of practical problems, researches and applications of multi-variate box-splines were paid intensive
attention to, and devel oped rapidly. 1993 saw the monograph Box Splines by de Boor, et allZ.

Bivariate 3-directional subdivision is a triangular subdivision with least directions. It is widely applied in
surface modeling, approximation etc. for its beautiful properties. Some scholars have done abundant researches*”
onit.

Bivariate 3-directional surfaces take triangular meshes as control meshes. The standard surface algorithm is
confined to the restriction that every de Boor point in meshes must have valence (all edges with the point as one of
the end points) of 6. When interpolating 3D scattered point-set, its triangulation is built firstly. Then the control
meshes are computed. Because the topological structure of the mesh is the same as the triangulation that is arbitrary,
the standard algorithm cannot be used directly. It is necessary to transform the standard algorithm for arbitrary
triangular meshes.

Loop subdivision'® can be applied over triangular meshes, but it appears somewhat difficult for interpolation.
Smooth subdivision interpolations to scattered datal® ! are excellent for triangular meshes. Subdivision algorithms
lead to limit surfaces. However, in engineering practice precise coordinates of points are necessary.

Kolb and Seidel™, Li™™ discussed functional surfaces interpolations. The former is based on Nielson's
minimum norm network without convex hull property, and the later is a convex preserving interpolation including a
kind of complicated nonlinear optimization process.

Ueshiba and Roth!*, Loop!*® presented respectively creations of G* surfaces with Bézier patches over closed
meshes of triangular meshes. The convex hull property, very important one, is ignored there.

Starting from the standard bivariate quartic box-splines surface algorithm, this paper proposes an algorithm for
arbitrary triangular control meshes. The created surfaces are piecewise C', geometric invariant, convex preserving
and local for computation.

2 Surfaces of Bivariate 3-Directional Quartic Box-Splines

The analytical definition of box-splineis given as:
For agiven Bs,n, each row of which eRX0. Its box-spline M, can be defined by the following distribution
Mg :C(R%) - Rip> (Mg,0) = [p(Br)dt
b

where b=[0,...,1)" is a semi-closed regular polyhedron with n edges. For Bu¢ with {eR\0, Mg, can be computed
by the following convolution

1
Mg, :IOMB('_té/)dt
More basic properties of box splines can be referred to Ref.[3] and will not be stated here. Bivariate
3-directional quartic box-splines (hereafter noted as M) are defined on Bivariate 3-directional subdivision. In the

light of the inductive definition of box-splines, it is the convolution of two Courant hat functions, i.e.
M =M 101 *M . It is a bivariate function of piecewise quartic polynomials as shown in Fig.1 (left,
011 bii

101
011
right is its support).
Taking M as basic functions, a bivariate 3-directional surface can be defined as: S(u) :Zde (u-1j), ueR?

jeZ? d; are de Boor points. It is C* and is enough for engineering applications of CAGD.
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Fig.1 Bivariate 3-directiona quartic box splines

3 Surfacesfor Arbitrary Triangulations

For a de Boor point d;, its 1-neighborhood is defined as the set of al points indented to it. For atriangle, its
1-neighborhood is defined as the union of 1-neighborhoods of its 3 vertices. The valence V; of d; is defined as the
number of all pointsin its 1-neighborhood. In the following, a surface algorithm will be clarified for meshes with de
Boor points of arbitrary valences.

3.1 Algorithm

As atriangle Adyod; od; 1 Of control mesh is concerned (see Fig.2), the patch in the surface corresponds to the
parametric domain S O<v<u<l. After a simple analysis, M; (M;=M(u—j)) restricted to the triangle is zero for js,
which are not in the set of the listed 12 index pairs as shown in (12 (22

Figure 2. In other words, a triangular patch in the surface is
entirely determined by 3 vertices of its control triangle and 9 de
Boor points around the triangle, and its 1-neighborhood. So, for
a control mesh, the whole surface can be generated patch by (-1,0)
patch.

For the de Boor points with arbitrary valences, an
algorithm is constructed here. A triangular patch is determined
by the 1-neighborhood of the corresponding control triangle.

(-1-1) (1-1)

(-1
Fig.2 12 de Boor points that determine

In control mesh, 3 vertices of a triangle Addjdy (listed atriangular patch

anticlockwise in triangulation) are noted as dyg, dio and dy ;.

Corresponding to the edge dy od; o, in the quadrilateral with dy od; o as the diagonal, the point across dy od; o from dy 5
is noted as do_;. Similarly d,; and dy; are got corresponding to d; od; ; and dy ;do respectively. Now 6 points are
obtained and put in a point matrix

do,l d1,1 d21
db = do,o dl,O 0
dO,—l 0 0

Each triangle has such a relevant point matrix.
Relative to dy, Ny is defined
MO,l_ﬁO,O _ﬂll Mll_ﬁO,O _ﬁl,O MZ,l_ﬂiLO _ﬁl,l
N, = Mo,o _,Bl,o _ﬂn Mlo _:Bo,o _,Bl,l 0
MO,—l_ﬂO,O _IBl,O 0 0
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Where S are the functions relevant to vertices d;, j<{(0,0),(1,0),(1,1)}.
The patch corresponding to Ad;d;dy can be computed as
S(u) = Zd (i, )N, (0, J)+ZA €
(i,1)=@.0)
A in Ny and A; in (1) are calculated according to the valence of d;. For an open triangulation, there are no
patches for boundary triangles, so only inner points are considered. V; of an inner point is at least 3. A; are
calculated as follows:

(1) V=3
Ao o=d_1 1M1 _1+d_1 oM_10; A10=05 oMy g+dy 1M1 _1; A 1=01 oMy o+d; Mo 5;

(2) V=4

Ago=0o1(M_1,_1+2£,0)+do_1(M_1,0+2f0,0); A1,0=do,-1(M2,0+21,0)+02,1(M1,_1+261 0);

A11=05 (M1 2421 1)+dg 1 (M2 2421 1);
(3) Vj=5

Ao 0=0_1,0(x0,0~fo,0); A1,0=02,0(a1,0-1,0); A11=01 2(0t1,1—P11)

(4) V;>6

| 6 Y
Z d 00 tdao(M o= FBoo)+dy (M4 —Boo):

00

6B "&°

VIS 6 Z dio+dy (Mg s = 10) +d20(Moo = Bro) ;
Vio
64, W°
=V _& 6 - Z Ay +012(Myp = A1) +d55(My, = A1) -
Vi

Where dj,, d;, and dj, are Vo6 points between d ;o and d 5 3, Vi-6 points between d; 4 and dy, Vq1—6

V, -6
points between d;, and d,, respectively. When V=3, 4=0; when V;=4, V;=5 and V;>6, p, :‘V—Hj. 6 are
i

Opp =1~ ¢o,o) Mo+ ¢0,0M 11 Qoo = (- ¢o,o) M, + ¢o,o'\/I -
Oo=L- M 1+ M,y andogare <ag=1-@o)M,o+4 M, ; , where ¢ are defined as
O, =1-4 )My, +4,My, a,, =1-¢ )M, +4.M,,

¢0,0(u) = (_Zug + 3u1ug)lu13
¢1,o(u) =(-2(1- Ul)3 +3(1-u +uy) (1~ Ul)z)/(l_ U + U2)3 (u=(u,uy) e R? )
¢1,1(U) = (_2(u1 L 3 uz)3 + 3(1_ Uz)(u1 - uz)z)/(l_ u2)2

3.2 Analysisof thealgorithm

As an approximation of the de Boor control mesh, the surface S(u) is a piecewise polynomial surface. It is clear
that S(u) holds geometric invariant, local properties, etc.

S(u) can also be expressed as S(u) = Y’ 4,d; . According to the algorithm, 4>0 and ) 4 =1. So the surfaces
by the algorithm hold the property of convex-preserving.

The following will concentrate on the analysis of continuity. Let two patches S and S have the common
boundary dgod; o, i.€. a'l,oao,o (can be referred to Fig.4). At the boundary, the parametric points (u,v) and (U,V)
meet U=1-u and v=V =0.Under such common boundary, there exists the following lemma.

My, M 4,

Lemma. For S and S, a the boundary ( Gi=1-u, v=v=0), M, =M_y,, P
u u
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oM, _ oM 4, ’ 0*M 20 _ 62M-Lo 62M2,o _ (’?ZM_LO , 62M2,o _ (’?ZM_LO and azMz,o _ aZM—l,O . Similarly,

ov ov ou? ou? ov? ov? ouov duov ovou ovéu
val,O and szo, Mvovl and Ml,flv M‘l.fl and Mo,lv M"O'il and Ml,l! Ml.l and MO,fla M‘flfl and Mz’l, M2,1 and

M1 1, I\ZO,O and My g, I\ﬁm and My o have the same relationship as I\Zz,0 and M_p 5.
Proof: From the symmetry of M and boundary condition, it is clear that: I\ZZ,O =M (U-2,V)=M(-u-1,-v)=
M(u+1,v)=M_; . Because of v=v =0, then
My, _M(T-27) 0l _ oM (T-20)|

ou oi  ou E
0— oM M,, oM
After a brief computation, — M (u~ 20)| _OMu+10) _ ’1'°| Li.e 20 2" 20 '|tisalso easy
U i au au |, au au

to get other relations stated in the lemma between I\Zz,0 and M_p 5.

Similarly, the rest between M and M can be proved without any difficulty.

The relation between M and M in lemma is under the boundary condition U=1-u, v=v=0. There exists
asimilar relation if under another kind of boundary.

Theorem 1. Each patch of the surface is C2

According to Eq.(1) and the calculation of A;, it is known that in the inner of the patch, every second derivative
of S(u) exists and is continuous. So each patch of the surface is C2.

Theorem 2. If each de Boor point has valence 3, every two adjacent patches have C? continuity at the common
boundary.

Proof: A close mesh of 4 de Boor points is shown in Fig.3. Each point is 4 duplicated. The patches S and S
have the common boundary of U=1-u and v=v=0. For M, when v=0, My, M,, and their first and second
derivatives with respect to u and v are 0. Then at the boundary

S=do,0o(Mo,o+Mz2,0)+d1,0(M1,0+M_1 0)+d1 1 (M1, 1+M_3 _1+M1 _1)+do_1(Mo_1+Mo,1+M2,1)
and

§ = ao,o(Mo,o + Mz,o) + al,O(Ml,O + M—l,o) + al,l(Ml,l + M—l,—l + Ml,—l) + aO,—l(MO,—l + MO,I + '\7'2,1)

= dl,O(MO,O + Mz,o) + dO,O(Ml,O + M—l,o) + dO,—l(Ml,l + M-fl,fl + Ml,—l) + d1,1('\7[0,4 v Mo,l & I\-/|~2,1)

Through comparing the coefficients of the same points in the two formulae, S and S isC?at the boundary
according to the lemma.

diz d-10 d 0
dis
dg
dint do
= d
daz "

doo

dy0 022

Fig.3 When every de Boor point has valence 3

Theorem 3. For an arbitrary triangular mesh, surface by the algorithm is piecewise C.

Proof: It is still supposed that the boundary of S and S is do 01,0 (Jmao,o) and meets U=1-u and
v=v=0.

Because when v=0, M1 5, M, and their first and second derivatives with respect tou and v are @l 0, 6;; is so

© PEBREBALTU bt/ www. jos. org. cn



2216 Journal of Software Vol.17, No.10, October 2006

0 0 . 0
aswell. Then a;, and /3 are 0. Then Ay;=0, 6A“ =0, %:o. Given ¢ and g, when, ¢¢=0, ?’-0 =0 and
u u
0
% =0. S0, 6hoand M_y 4, ago and M_; _; have the following relation
06 M _15 06hp M 5
‘90,0 =M -1,07 = ’ =
ou ou ov oV @
dogy OM_y ., Oayy M,
Qoo =M_ 4, = ) =
ou ou ov ov
- _4 Ot oo !
Similarly, when v=0, ¢; =1, o 0, and o 0.6, 0and My, 10 and M, _; have the relation
u
00, M,, 06, My,
91,0 =M 2,0 = ’ =
ou ou ov ov 3)
oo,y My, Oayy My,
Qg = Ml—l’ = , =
ou ou ov ov
As Vy, =\71,0, Vio :\70,0 , from Egs.(2) and (3) and the lemma, /4 and ELO meet
= 0P B oo o
=N 0 _ L0 0 _ /L 4
foo =g, 22 =10, T T @
ﬂLo and ﬂ0,0 meet
= 0B Bos o oo
=fogy ——=F———, —=—— 5
ﬂl,O ﬂ0,0 au 6U ('?V 8V ( )
Now Sand S can be denoted as
S=do,0(Mo,0—1,0)+d1,0(M1,0~Fo,0)+d1,1(M1,1—o,0-Br,0)+do-1(Mo,—1—Poo~Pr0)*+
[do,1(Mo,1-0,0)+A0,0] +[d2,1(M2 1~ £1,0)+A1 0] (6)
and
S=doo(Mgo=PBio)+dio(Myg= o) + 011 (Myg = Boo = Bro) +do 1 (Mo 1= Boo = Bro) +
[do;(Mos = Boo) + Aol +[dss (M = Bio) + Al %

= d1,o(Mo.o —/31,0) + dO,O(Ml,O - /30,0) + dO,—l(Ml,l _/30,0 _El,o) oy dl,l(MO.—l _50,0 —/;1,0) +
[aO,l(MO,l - 50,0) + ;b,o] + [JZ.l(MZ.l - 51,0) 3 "&1.0]
Making use of the lemma and Egs.(4) and (5), let the coefficients in Eqs.(6) and (7) be compared, it is found
that the former 4 terms are correspondingly equal, as well as their first derivatives.
Let Coo=[do,1(Mo.1—50,0)+A00], C1,0=[02,1(M21—L10)+A10]. The analysis will proceed under different conditions.
(1) One paint of boundary has valence 3.
In Fig.4, for Sand S Vio :\70'0 =3. Points are noted as in the figure. According to the algorithm,

C10=0;,1M3 1+dp oM o+d; _1M; _1=0; 1M 1+dg oM o+d1 1M1 4
and Coo=0gMg +d M 1 +d oM 5=0d; Mg, +dy;M;  +dg oM

Clearly, C; and 60.0 are equal, as well astheir first derivatives.

© PEBREBALTU bt/ www. jos. org. cn
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Fig.4 When two points of boundary edge shared by two patches have valences of 3 and >6
(2) One point of boundary has valence 4.
INFig.5, for Sand S V,,=V,,=4.
C10=02,1(M2,1=1,0)+do -1(M2,0+21,0) + 0o 1(M1,-1+231 0)=05,1(M2,1+ M3 1+ 51 0)+do,-1(M2,0+21 o)
and Cyp =gy (Mo; — Boo) +doa(M 4 1 +2B00)+ g (M 10+2850) =y (Mos +M 4 1+ Boo)+ o 1(M 1o+2550) -
Note that: M +2810=M20-[(1~61,0)M1_1+$1,0M2,0]=(1-¢10)(M20-My, 1) Considering ¢, o under v=0, M3 +251 0
and its first derivative is 0. Similarly, I\7I,L0 + 2/'50'0 has the same results. So, C; o and 60,0 are equal, as well asto
their first derivatives.

(3) One point of boundary has valence 5.
In Fig.5, for S and S Vio :\70'0 =5. According to the algorithm, Cqo=dg 1(Mo1—/0.0)+d_10(c00—fo0) and

Cro =051 (Myy = B10) +050(@10 = Bro) = d16(Myy = B10) + o (g = Buo) -
With the relation between app and M_; _; in Eq.(2), and that between I\Zz,1 and M_; _; stated in the lemma, g
and I\'/~I2Yl are equal, as well as their first derivatives. So are a;, and Mo for the same reason. Then C, o equals to

60,01 and they have the same first derivatives.

Fig.5 When two points of boundary edge shared by two patches have valences of 4 and 5
(4) One point of boundary has valence >6.
In Fig.4, for Sand S, Vio :\70'0 >6. In thelight of the algorithm,

© PEBREBALTU bt/ www. jos. org. cn
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65 i
Coo=0do1(Mgz— o) + v 0_0 z doo+d4 oM 5= Boo)+dy s(M_y 1~ Boo)

0,0 i=1

6600 . Ofo &7,
=01 (Mo; = Bog) +d10(M_1g—Boo) +dy 1(My 1= Boo) + dvo e Ly o0 Z doo
Voo =6 Voo—6 i

and

ﬂ Vi,0-6 ~ - - - ~ - ~
Cio= d21(M21 ﬂ10)+\7 L z dio+d 1 (My_y = Bio) +d,0(M 0= Bio)
i1

10

,B1 0 6ﬂ1,0 o

=d,, (M + Oy =k d o+, (M, 4 —Bio)+dy0(Myo—
21( 21 ﬂlO) 10\/1'0_6 Vlv0—6 ~ 1,0 1, 1( 1-1 IBI,O) 2,0( 2,0 ﬂl,O)
~ ~ 65 ~ ﬂ Vo,0-5 :
:do,l(M1,71_ﬂ1,o)+df1,o\7 1'06 1 1(M 21 ﬁlo)“‘dvOO 6(Mzo ﬂ10)+ —10 Z doo
10~ 1,0 —9i
. . . . Voo —6
With the relation between 6, and M_, o in Eq.(2), in the formula of Coo, M_10—foo and M_,—— Opo =
0,0
Voo —6 6 \ . . . .
1-— M :V_M'l’o have the same relation. With the relation between 6;, and M, in Eq.(3), in the
0,0 0,0
Y YA .y ~ -~
formulaof C,,, o 6 Voo 0,0 = 6 6,, and iM20 have the same relation.
\ Vo 07 6 Vo,o -6 Vo,o ’ Vo,o -6 Vo,o '

With the relation between I\Zz0 and M_; ¢ in the lemma, the coefficients of d_; o are equal in Cyo and 61,0, as
well as their first derivatives. So are the coefficients of dy%°™® in C,, and (SLO. Moreover, with the relationship
between o and ,El,o , and those stated in the lemma, Cyo and 61,0 have equal value and first derivatives.

From the analysis, it turns out that no matter what valences the boundary edge have, Cyo and 61,0, Cio and

C~:Oy0, as well as their first derivatives are correspondingly equal respectively. Therefore, S and S are C' a their

boundary.

The proof above is only for the boundary of U=1-u and v=v =0, but for other kinds of boundary, the
sameconclusions can be obtained. So, it can be summarized that: for an arbitrary triangular control mesh, its surface
by the algorithm is piecewise Ct.

3.3 Interpolation
It isvery easy to apply the algorithm to global or local interpolation. From the algorithm, it is easy to find that
point P; related to de Boor point d; is determined as
, :_(d ovE Zd ) (8)

| diel;

Where |; is the 1-neiborhood of d;. So the equation AD=P is constructed, where A(i,i):% and if diel; then

A, j) :Zvi' otherwise (d;¢!;)A(i,j)=0. It is clear that Al exsits, so from Eq.(8) the control meshes D for the
point-set P can be obtained.
For a local interpolation, i.e. the constructed surfaces interpolate some given points, the control meshes are

also easy to compute.

Let the final surface interpolate the point-set P,cP. P\P, is part of the control points. It is hecessary to compute
the control meshes D, corresponding to P,. Then the whole control points are D;UP\P,.

For any point PeP;, an equation can be constructed from Eq.(8). It is esay to get: Ad=P,, where d=[d,,
d,...,d;,...], deD,.

© PEBREBRELDIGT  hups/www. jos. org. cn
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4 Experiments

The first example is shown in Fig.6. Each point in a close mesh of 4 de Boor points have valence 3. The

surface comprise of 4 patches. Every two adjacent patches are C? continuous at their common boundary.
Another example is shown in Fig.7. The right above is the mesh’s projection to a plane. The control mesh is an

open one in which the valences are 3, 4, 5 and 6. Every two adjacent patches have continuity of C.
A

Fig.6 Examplel, al 4 de Boor pointswithvalence3  Fig.7 Example 2, de Boor points with arbitrary valences

The third example is for a global interpolation. The original point-set contains 8 102 sampled points from a
man face model. Then it is triangulated with the method in Ref.[16]. The resulted triangulation is of arbitrary
random point valences. As shown in Fig.8, based on the triangulation, the interpolative surface is reconstructed by
the algorithm. The relative error is 0.033. More detailed discussion can be found in Ref.[17].

Fig.8 Example 3, A man face reconstructed from an arbitrary triangulation

5 Conclusions

The analysis and experiments indicate that the surface algorithm proposed in this paper can be applied to
arbitrary triangular control meshes for approximation, global and local interpolation. Surface generated by the
agorithm holds a better smoothness as a whole. It is piecewise C* and C? in the inner of each patch. In addition,
surfaces by the algorithm hold the convex-preserving property.

Future work may lie in algorithm excellence in global or local interpolative surfaces for open triangulations.
Thisisinvolved in how to build pseudo boundaries.
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