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Abstract:  For arbitrary triangular control meshes, a surface algorithm based-on bivariate box-spline is developed. 
Bivariate 3-direction is a triangulation with the least directions. Box spline built on it is widely applied in CAGD. 
Its standard surface algorithm is only for normal control mesh in which every point has valence 6. Starting with 
bivariate 3-directional quartic box-splines, the paper proposes an algorithm for arbitrary triangular control meshes. 
The analysis of its properties especially continuity are presented in detail. The constructed surfaces by the algorithm 
are convex preserving, and they are piecewise C1. The algorithm can be easily applied for global or local 
interpolation, which is indispensable in 3D surface reconstruction from scattered points. 
Key words:  bivariate 3-directional quartic box-splines; box-splines surface; piecewise C1; arbitrary triangular 

meshes 

摘  要: 提出一种以任意三角剖分为控制网格的二元箱样条曲面算法.二元三方向剖分是方向最少的三角剖
分,建立在其上的二元三向四次箱样条在 CAGD 等领域有着广泛的应用.其规范的箱样条曲面计算仅适用于控
制点的价数均为 6 的网格.从规范的算法出发,提出了一种任意价数控制网格的曲面计算算法,并对算法的连续
性等进行了详细的分析.生成的曲面具有保凸性,且是分片 C1连续的.该算法可进行 3D 离散点全局或局部插值,
并可应用于 3D曲面重构等领域. 
关键词: 二元三向四次箱样条;箱样条曲面;分片 C1;任意三角形网格 
中图法分类号: TP391   文献标识码: A 

1   Introduction 

Triangular splines were first considered by Sabin in 1977, and later they were found to be ‘box-splines’[1]. With 
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the requirements of practical problems, researches and applications of multi-variate box-splines were paid intensive 
attention to, and developed rapidly. 1993 saw the monograph Box Splines by de Boor, et al[2]. 

Bivariate 3-directional subdivision is a triangular subdivision with least directions. It is widely applied in 
surface modeling, approximation etc. for its beautiful properties. Some scholars have done abundant researches[3−7] 
on it. 

Bivariate 3-directional surfaces take triangular meshes as control meshes. The standard surface algorithm is 
confined to the restriction that every de Boor point in meshes must have valence (all edges with the point as one of 
the end points) of 6. When interpolating 3D scattered point-set, its triangulation is built firstly. Then the control 
meshes are computed. Because the topological structure of the mesh is the same as the triangulation that is arbitrary, 
the standard algorithm cannot be used directly. It is necessary to transform the standard algorithm for arbitrary 
triangular meshes. 

Loop subdivision[8] can be applied over triangular meshes, but it appears somewhat difficult for interpolation. 
Smooth subdivision interpolations to scattered data[9−11] are excellent for triangular meshes. Subdivision algorithms 
lead to limit surfaces. However, in engineering practice precise coordinates of points are necessary. 

Kolb and Seidel[12], Li[13] discussed functional surfaces interpolations. The former is based on Nielson’s 
minimum norm network without convex hull property, and the later is a convex preserving interpolation including a 
kind of complicated nonlinear optimization process. 

Ueshiba and Roth[14], Loop[15] presented respectively creations of G1 surfaces with Bézier patches over closed 
meshes of triangular meshes. The convex hull property, very important one, is ignored there. 

Starting from the standard bivariate quartic box-splines surface algorithm, this paper proposes an algorithm for 
arbitrary triangular control meshes. The created surfaces are piecewise C1, geometric invariant, convex preserving 
and local for computation. 

2   Surfaces of Bivariate 3-Directional Quartic Box-Splines 

The analytical definition of box-spline is given as: 
For a given Bs×n, each row of which ∈Rs\0. Its box-spline MA can be defined by the following distribution 

∫=
b

B
s

B tBtMRRCM d)(,:)(: ϕϕϕaa  

where b=[0,…,1)n is a semi-closed regular polyhedron with n edges. For B∪ζ with ζ∈Rs\0, MB∪ζ can be computed 
by the following convolution 

∫ −⋅=∪

1

0
d)( ttMM BB ζζ  

More basic properties of box splines can be referred to Ref.[3] and will not be stated here. Bivariate 
3-directional quartic box-splines (hereafter noted as M) are defined on Bivariate 3-directional subdivision. In the 
light of the inductive definition of box-splines, it is the convolution of two Courant hat functions, i.e. 
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MMM . It is a bivariate function of piecewise quartic polynomials as shown in Fig.1 (left, 

right is its support). 
Taking M as basic functions, a bivariate 3-directional surface can be defined as:  u∈R∑ −= ),()( juu j MdS 2, 

j∈Z2, dj are de Boor points. It is C2 and is enough for engineering applications of CAGD. 
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Fig.1  Bivariate 3-directional quartic box splines 

3   Surfaces for Arbitrary Triangulations 

For a de Boor point dj, its 1-neighborhood is defined as the set of all points indented to it. For a triangle, its 
1-neighborhood is defined as the union of 1-neighborhoods of its 3 vertices. The valence Vj of dj is defined as the 
number of all points in its 1-neighborhood. In the following, a surface algorithm will be clarified for meshes with de 
Boor points of arbitrary valences. 

3.1   Algorithm 

As a triangle ∆d0,0d1,0d1,1 of control mesh is concerned (see Fig.2), the patch in the surface corresponds to the 
parametric domain S: 0≤v≤u≤1. After a simple analysis, Mj (Mj=M(u−j)) restricted to the triangle is zero for js, 
which are not in the set of the listed 12 index pairs as shown in 
Figure 2. In other words, a triangular patch in the surface is 
entirely determined by 3 vertices of its control triangle and 9 de 
Boor points around the triangle, and its 1-neighborhood. So, for 
a control mesh, the whole surface can be generated patch by 
patch. 
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For the de Boor points with arbitrary valences, an 
algorithm is constructed here. A triangular patch is determined 
by the 1-neighborhood of the corresponding control triangle. 

In control mesh, 3 vertices of a triangle ∆didjdk (listed 
anticlockwise in triangulation) are noted as d0,0, d1,0 and d1,1. 
Corresponding to the edge d0,0d1,0, in the quadrilateral with d0,0d1,0 as the diagonal, the point across d0,0d1,0 from d1,1 
is noted as d0,−1. Similarly d2,1 and d0,1 are got corresponding to d1,0d1,1 and d1,1d0,0 respectively. Now 6 points are 
obtained and put in a point matrix 

Fig.2  12 de Boor points that determine 
a triangular patch 
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Each triangle has such a relevant point matrix. 
Relative to db, Nb is defined 
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Where βj are the functions relevant to vertices dj, j∈{(0,0),(1,0),(1,1)}. 

The patch corresponding to ∆didjdk can be computed as 

  (1) ∑∑ +=
= j
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βj in Nb and Aj in (1) are calculated according to the valence of dj. For an open triangulation, there are no 
patches for boundary triangles, so only inner points are considered. Vj of an inner point is at least 3. Aj are 
calculated as follows: 

(1) Vj=3 
A0,0=d−1,−1M−1,−1+d−1,0M−1,0; A1,0=d2,0M2,0+d1,−1M1,−1; A1,1=d1,2M1,2+d2,2M2,2; 

(2) Vj=4 
A0,0=d0,1(M−1,−1+2β0,0)+d0,−1(M−1,0+2β0,0); A1,0=d0,−1(M2,0+2β1,0)+d2,1(M1,−1+2β1,0); 
A1,1=d2,1(M1,2+2β1,1)+d0,1(M2,2+2β1,1); 

(3) Vj=5 
A0,0=d−1,0(α0,0−β0,0); A1,0=d2,0(α1,0−β1,0); A1,1=d1,2(α1,1−β1,1) 
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Where ,  and  are Vid 0,0
id 0,1

id 1,1 0,0−6 points between d−1,0 and d−1,−1, V1,0−6 points between d1,−1 and d2,0, V1,1−6 

points between d1,2 and d2,2 respectively. When Vj=3, βj=0; when Vj=4, Vj=5 and Vj>6, j
j
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3.2   Analysis of the algorithm 

As an approximation of the de Boor control mesh, the surface S(u) is a piecewise polynomial surface. It is clear 
that S(u) holds geometric invariant, local properties, etc. 

S(u) can also be expressed as ∑= iidS λ)(u . According to the algorithm, λi≥0 and . So the surfaces ∑ ≡1iλ

by the algorithm hold the property of convex-preserving. 

The following will concentrate on the analysis of continuity. Let two patches S and S
~

 have the common 

boundary d0,0d1,0, i.e. 0,00,1
~~
dd  (can be referred to Fig.4). At the boundary, the parametric points (u,v) and )~,~( vu  

meet uu −=1~  and 0~ == vv . Under such common boundary, there exists the following lemma. 
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~

, at the boundary ( uu −=1~ , 0~ == vv ), 0,2
~M =M−1,0, u

M
u

M
∂

∂
=

∂
∂ − 0,10,2

~
, 

 



 张永春 等:任意三角形网格的基于二元四次箱样条分片 C1曲面 2215 

 

v
M

v
M

∂
∂

=
∂

∂ − 0,10,2
~

, 2
0,1

2

2
0,2

2 ~

u
M

u
M

∂

∂
=

∂

∂ − , 2
0,1

2

2
0,2

2 ~

v
M

v
M

∂

∂
=

∂

∂ − , 
vu

M
vu

M
∂∂

∂
=

∂∂
∂ − 0,1

2
0,2

2 ~
 and 

uv
M

uv
M

∂∂
∂

=
∂∂

∂ − 0,1
2

0,2
2 ~

. Similarly, 

0,1
~

−M  and M2,0, 1,0
~M  and M1,−1, 1,1

~
−M  and M0,1, 1,0

~
−M  and M1,1, 1,1

~M  and M0,−1, 1,1
~

−−M  and M2,1, 1,2
~M  and 

M−1,−1, 0,0
~M  and M1,0, 0,1

~M  and M0,0 have the same relationship as 0,2
~M  and M−1,0. 

=−= )~,2~(0,2 vuM

0=v

u
−
~

)0,2
u
uv
∂
∂~)~,2

u
M
∂

∂ 0,2
~

01~

)0,1)0,2 0,1(
~

~(
∂

∂
u

uM

=−=

∂
=

+−
−

uu u
−

∂ vu
M

∂
∂

=
uM

u
∂

=0,2

0,2
~

M~

M~ u− v

u−=1 0~ =v

~ ~~)~)~(

~~~
)~~~~

)~(
~~

1,0

1,0

MM

M

+

+

S
1,

,01

d

d

+

+

−1,1

1,1

M

M

+

+

0,1

0,1

M

M

+

+

00

10

d

d

+

+

0

0

M

M

+

+

0,1

0,0

d

d

=

=S

~

0 u−1

0~ == vv

S
~S

0 d2,2

d1,0

−d 1,0

− −1, 1

d
~

Proof:  From the symmetry of M and boundary condition, it is clear that: ~M M(−u−1,−v)= 

M(u+1,v)=M−1,0. Because of ~= v , then 

uu

uM
u

uM

−=∂
∂

−=
∂
−∂

=
1~

~(
~

~( . 

After a brief computation, , i.e. 
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to get other relations stated in the lemma between M  and M−1,0. 

Similarly, the rest between M and  can be proved without any difficulty. 
The relation between M and  in lemma is under the boundary condition u =1~ , 0~ == v . There exists 

a similar relation if under another kind of boundary. 
Theorem 1. Each patch of the surface is C2. 
According to Eq.(1) and the calculation of Aj, it is known that in the inner of the patch, every second derivative 

of S(u) exists and is continuous. So each patch of the surface is C2. 
Theorem 2. If each de Boor point has valence 3, every two adjacent patches have C2 continuity at the common 

boundary. 

Proof:  A close mesh of 4 de Boor points is shown in Fig.3. Each point is 4 duplicated. The patches S and S
~

 
have the common boundary of u~  and =v . For M, when v=0, M1,2, M2,2 and their first and second 
derivatives with respect to u and v are 0. Then at the boundary 
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Through comparing the coefficients of the same points in the two formulae, S and  is C2 at the boundary 
according to the lemma. 
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Fig.3  When every de Boor point has valence 3 

Theorem 3. For an arbitrary triangular mesh, surface by the algorithm is piecewise C1. 

Proof:  It is still supposed that the boundary of S and S
~

 is d0,0d1,0 ( ,00,1
~~
dd ) and meets u =~  and 

. 
Because when v=0, M1,2, M2,2 and their first and second derivatives with respect to u and v are all 0, θ1,1 is so 
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as well. Then α1,1 and β1,1 are 0. Then A1,1=0, 01,1 =
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Now S and S
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 can be denoted as 
S=d0,0(M0,0−β1,0)+d1,0(M1,0−β0,0)+d1,1(M1,1−β0,0−β1,0)+d0,−1(M0,−1−β0,0−β1,0)+ 

[d0,1(M0,1−β0,0)+A0,0]+[d2,1(M2,1−β1,0)+A1,0] (6) 
and 
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Making use of the lemma and Eqs.(4) and (5), let the coefficients in Eqs.(6) and (7) be compared, it is found 
that the former 4 terms are correspondingly equal, as well as their first derivatives. 

Let C0,0=[d0,1(M0,1−β0,0)+A0,0], C1,0=[d2,1(M2,1−β1,0)+A1,0]. The analysis will proceed under different conditions. 
(1) One point of boundary has valence 3. 

In Fig.4, for S and S
~

 3~
0,00,1 ==VV . Points are noted as in the figure. According to the algorithm, 
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and 0,10,01,11,21,01,10,10,11,11,11,01,00,0
~~~~~~~~~~

−−−−−−−−− ++=++= MdMdMdMdMdMdC  

Clearly, C1,0 and 0,0
~
C  are equal, as well as their first derivatives. 
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Fig.4  When two points of boundary edge shared by two patches have valences of 3 and >6 

(2) One point of boundary has valence 4. 

In Fig.5, for S and S
~

 4~
0,00,1 ==VV . 

C1,0=d2,1(M2,1−β1,0)+d0,−1(M2,0+2β1,0)+d2,1(M1,−1+2β1,0)=d2,1(M2,1+M1,−1+β1,0)+d0,−1(M2,0+2β1,0) 

and )
~

2~(
~

)
~~~()

~
2~(

~
)

~
2~(

~
)

~~(
~~

0,00,11,00,01,11,01,20,00,11,00,01,11,00,01,01,00,0 βββββ ++++=++++−= −−−−−−−− MdMMdMdMdMdC . 

  Note that: M2,0+2β1,0=M2,0−[(1−φ1,0)M1,−1+φ1,0M2,0]=(1−φ1,0)(M2,0−M1,−1) Considering φ1,0 under v=0, M2,0+2β1,0 

and its first derivative is 0. Similarly, 0,00,1
~

2~
β+−M  has the same results. So, C1,0 and 0,0

~
C  are equal, as well as to 

their first derivatives. 
(3) One point of boundary has valence 5. 

In Fig.5, for S and S
~

 5~
0,00,1 ==VV . According to the algorithm, C0,0=d0,1(M0,1−β0,0)+d−1,0(α0,0−β0,0) and 

)
~~()

~~()
~~(

~
)

~~(
~~

0,10,11,00,11,220,11,21,20,1 βαββ −+−+−= dMdMdC 0,10,10,1 β =− −d0, α . 

With the relation between α0,0 and M−1,−1 in Eq.(2), and that between 1,2
~M  and M−1,−1 stated in the lemma, α0,0 

and 1,2
~M  are equal, as well as their first derivatives. So are 0,1

~α  and M0,1 for the same reason. Then C1,0 equals to 

0,0
~
C , and they have the same first derivatives. 
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Fig.5  When two points of boundary edge shared by two patches have valences of 4 and 5 
(4) One point of boundary has valence >6. 

In Fig.4, for S and S
~

, 6~
0,00,1 >=VV . In the light of the algorithm, 
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With the relation between θ0,0 and M−1,0 in Eq.(2), in the formula of C0,0, M−1,0−β0,0 and =
−

−− 0,0
0,0

0,0
0,1

6
θ

V
V

M  

0,1
0,0

0,1
0,0

0,0 6)
6

1( −− =
−

− M
V

M
V

V

0,1

 have the same relation. With the relation between θ1,0 and M2,0 in Eq.(3), in the 

formula of 
~C , 0,1

0,0
0,1

0,0

0,0

0,00,0

0,1 ~
6

6~6
6

6
6

~
6

θθ
β

−
=

−
−

=
− VV

V
VV

 and 0,2
0,0

~6 M
V

 have the same relation. 

With the relation between 0,2
~M  and M−1,0 in the lemma, the coefficients of d−1,0 are equal in C0,0 and 0,1

~C , as 

well as their first derivatives. So are the coefficients of  in  and 6
0,0

0,0 −Vd 0,0C 0,1
~C . Moreover, with the relationship 

between β0,0 and 0,1
~
β , and those stated in the lemma, C0,0 and 0,1

~C  have equal value and first derivatives. 

From the analysis, it turns out that no matter what valences the boundary edge have, C0,0 and 0,1
~C , C1,0 and 

0,0
~
C , as well as their first derivatives are correspondingly equal respectively. Therefore, S and S

~
 are C1 at their 

boundary. 
The proof above is only for the boundary of uu −=1~  and 0~ == vv , but for other kinds of boundary, the 

sameconclusions can be obtained. So, it can be summarized that: for an arbitrary triangular control mesh, its surface 
by the algorithm is piecewise C1. 

3.3   Interpolation 

It is very easy to apply the algorithm to global or local interpolation. From the algorithm, it is easy to find that 
point Pi related to de Boor point di is determined as 

 )1(
2
1 ∑

∈

+=
ii

i
i

ii V Id
ddP  (8) 

Where Ii is the 1-neiborhood of di. So the equation AD=P is constructed, where 
2
1),( =iiA  and if dj∈Ii then 

iV
jiA

2
1),( = , otherwise (dj∉Ii)A(i,j)=0. It is clear that A−1 exsits, so from Eq.(8) the control meshes D for the 

point-set P can be obtained. 
For a local interpolation, i.e. the constructed surfaces interpolate some given points, the control meshes are 

also easy to compute. 
Let the final surface interpolate the point-set PI⊂P. P\PI is part of the control points. It is necessary to compute 

the control meshes DI corresponding to PI. Then the whole control points are DI∪P\PI. 
For any point P∈PI, an equation can be constructed from Eq.(8). It is esay to get: Aldl=Pl, where dl=[d1, 

d2,…,di,…], di∈DI. 
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4   Experiments 

The first example is shown in Fig.6. Each point in a close mesh of 4 de Boor points have valence 3. The 
surface comprise of 4 patches. Every two adjacent patches are C2 continuous at their common boundary. 

Another example is shown in Fig.7. The right above is the mesh’s projection to a plane. The control mesh is an 
open one in which the valences are 3, 4, 5 and 6. Every two adjacent patches have continuity of C1. 

 
 
 
 
 
 
 
 

Fig.6  Example 1, all 4 de Boor points with valence 3   Fig.7  Example 2, de Boor points with arbitrary valences 

The third example is for a global interpolation. The original point-set contains 8 102 sampled points from a 
man face model. Then it is triangulated with the method in Ref.[16]. The resulted triangulation is of arbitrary 
random point valences. As shown in Fig.8, based on the triangulation, the interpolative surface is reconstructed by 
the algorithm. The relative error is 0.033. More detailed discussion can be found in Ref.[17]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8  Example 3, A man face reconstructed from an arbitrary triangulation 

5   Conclusions 

The analysis and experiments indicate that the surface algorithm proposed in this paper can be applied to 
arbitrary triangular control meshes for approximation, global and local interpolation. Surface generated by the 
algorithm holds a better smoothness as a whole. It is piecewise C1 and C2 in the inner of each patch. In addition, 
surfaces by the algorithm hold the convex-preserving property. 

Future work may lie in algorithm excellence in global or local interpolative surfaces for open triangulations. 
This is involved in how to build pseudo boundaries. 
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