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Abstract:  This paper considers the problem of scheduling n jobs on m parallel unbounded batch machines to 
minimize the total weighted completion time. Each job is characterized by a positive weight, a release time and a 
processing time. Each unbounded batch machine can process up to B (B≥n) jobs as a batch simultaneously. The 
processing time of a batch is the longest processing time among jobs in the batch. Jobs processed in the same batch 
have the same completion time, i.e., their common starting time plus the processing time of the batch. A polynomial 
time approximation scheme (PTAS) for this problem is presented. 
Key words:  polynomial time approximation scheme; scheduling; parallel unbounded batch machines; total 

weighted completion time; release times 

摘  要: 考虑无界批量机器并行调度中极小化加权完工时间和问题.设有 n 个工件和 m 台批加工同型机.每个
工件具有一个正权因子、一个释放时间和一个加工时间.每台机器可以同时加工 B≥n个工件.一个批次的加工时
间是该批次所包含的所有工件的加工时间的最大者.在同一批次中加工的工件有相同的完工时间,即它们的共
同开始时间加上该批次的加工时间.给出了一个多项式时间近似方案(PTAS). 
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A batch machine is a machine that can process up to B jobs simultaneously as a batch. The research on batch 

machine scheduling is motivated by burn-in operations in semiconductor manufacturing[1]. There are two variants of 
the burn-in model: the unbounded model, in which B≥n so that there is effectively no upper bound on the number of 
jobs that can be processed in the same batch; and the bounded model, in which B<n so that there is a restrictive 
upper bound. The unbounded model arises for instance in situations where compositions need to be hardened in 
kilns, and a kiln is sufficiently large that it does not restrict batch seizes[2]. In this paper, we consider the unbounded 
model. 

The problem that we study can be formulated as follows. There is a set of n jobs where job j is associated with 
a positive weight wj, a processing time pj that specifies the minimum time needed to process the job, and a release 
time rj before which it cannot be scheduled. The processing time of a batch is the longest processing time among the 
jobs in the batch. The completion time of a batch is equal to its start time plus its processing time. Jobs processed in 
the same batch have the same completion time, which is the completion time of the batch in which the jobs 
contained. Once processing is begun on a batch, no job can be removed from the batch until the processing of the 
batch is complete. The objective is to schedule the jobs on a set of m identical parallel unbounded batch machines so 
as to minimize ∑wjCj, where Cj denotes the completion time of job j in the schedule. This objective function is 
referred to as the total weighted completion time. Using the notation of Graham et al.[3], we denote this problem as 
P|rj,B≥n|∑wjCj, where P denotes that the scheduling environment contains m identical parallel machines. In 
comparison, the single unbounded batch machine case (m=1) is denoted as 1|rj,B≥n|∑wjCj. 

The single unbounded batch machine case has been extensively studied. Along with other results, P. Brucker et 
al.[2] presented an O(nlogn)-time exact algorithm for 1|B≥n|∑wjCj (all rj=0). X. Deng and Y. Zhang[4] proved that the 
problem 1|rj,B≥n|∑wjCj is NP-hard. X. Deng et al.[5] and S. Li et al.[6] presented the first PTAS for 1|rj, B≥n|∑Cj (all 
wj=1) and 1|rj,B≥n|∑wjCj respectively. In fact, the ideas used in Ref.[6] can be generalized to get a PTAS for 
Pm|rj,B≥n|∑wjCj (m is a fixed number). 

To the best of our knowledge, the problem P|rj,B≥n|∑wjCj (m is part of the input) has not been studied to date. 
In this paper, we present a PTAS for this problem. The result is based on the techniques developed in Ref.[7], where 
the authors presented the first PTASs for the classical scheduling problem (B=1) of minimizing total weighted 
completion time in the presence of release times in various machine models. Even though the general framework in 
our study follows that in Ref.[7], the special property of unbounded batch machines makes the detailed analysis 
quite non-trivial. For example, dealing with small jobs becomes different from their methods. Scheduling jobs 
within a block cannot trivially follow their method and demands special treatment. 

This paper is organized as follows: In Section 1, we discuss some general techniques and lemmas that apply 
throughout the paper. In Section 2, we present an overview of the dynamic programming framework. In Section 3, 
we show that there exists a (1+ε)-approximate schedule such that one can represent compactly the information about 
jobs remaining after each block. In Section 4, we focus on the case of scheduling jobs within a block. We conclude 
this paper in Section 5. 

1   Preliminaries 

To establish a polynomial time approximation scheme (PTAS), for any given positive number ε, we need find a 
solution within a (1+ε) factor of the optimum in polynomial time. In this section, we aim to transform any input into 
one with a simple structure. We say, as in Ref.[7], a transformation produces 1+O(ε) loss if it potentially increases 
the objective function value by 1+O(ε). To simplify notations we will assume throughout the paper that 1/ε is 
integral and ε≤1/4 (otherwise we simply work with ε′ such that ε′<ε, 1/ε′ is integral and ε′≤1/4). We call a job 
available if it has been released but not yet been scheduled. 
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Some of the lemmas mentioned in subsequent sections, introduced by Ref.[7] for the classical scheduling 

problems (B=1), are still effective for our problem. For simplicity, we omit proofs when we present these lemmas. 
Lemma 1.1[7]. With 1+ε loss, we can assume that all processing times and release times are integer powers of 

1+ε. 
For an arbitrary integer x , we define Rx:=(1+ε)x. As a result of Lemma 1.1, we can assume that all release 

times are of the form Rx for some integer x. We partition the time interval (0,∞) into disjoint intervals of the form 
Ix:=[Rx,Rx+1] (Lemma 1.2 below ensures that no jobs are released at time 0). We will use Ix to refer to both the 
interval and the size (Rx+1−Rx) of the interval. We will often use the fact that Ix=εRx. 

Lemma 1.2[7]. With 1+ε loss, we can enforce rj≥εpj for all jobs j. 
Lemma 1.3[7]. Each batch crosses at most s:=log1+ε(1+1/ε) intervals. 
As in Ref.[7], we classify jobs (batches) as small and large. We say that a job j is small with respect to an 

interval Ix if pj≤εIx, and large otherwise. We say that a batch is large if it contains at least one large job, and small 
otherwise. 

Lemma 1.4[7]. With 1+ε loss, we restrict attention to schedules in which no small batch crosses an interval. 
The following lemma shows that each job becomes small after waiting a constant number of intervals. 
Lemma 1.5. Let k:=1+log1+ε(1/ε3), rj=Rx. Then job j is small in interval Ix+k. 

Proof:  By Lemma 1.2, we get kxk
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Lemma 1.6. The number of distinct processing times of available large jobs in each interval is at most 
k=1+log1+ε(1/ε3). 

Proof:  Consider interval Ix. For each job j in the set of the available large jobs in Ix, Lemma 1.2 yields Rx≥εpj. 
On the other hand, since j is large, we get pj≥εIx=ε2Rx. Since all job processing times are integer powers of 1+ε, the 
number is as claimed. □ 

Let Px1<…<Pxk be the k distinct processing times of the available large jobs in interval Ix, regardless of the fact 
that some of them may not exist. We call the jobs with processing time Pxl the Pxl-jobs, l=1,2,…,k. 

We combine Lemmas 1.5 and 1.6 to get a simple observation. 
Lemma 1.7. The Pxl-jobs cannot be released earlier than Rx−k+l (1≤l≤k). 

2   The Dynamic Programming Framework 

In this section, we give an overview of the dynamic programming framework from Ref.[7]. 
The basic idea is to decompose the time horizon into a sequence of blocks, say , each containing K,, 21 BB

s=log1+ε(1+1/ε) consecutive intervals. By the choice of the block size and Lemma 1.3, no batch crosses an entire 
block. In other words batches that start in iB  finish either in  or . A frontier describes the potential ways iB 1+iB

that batches in one block finish in the next. 
Lemma 2.1.[7] There exists a (1+ε)-approximate schedule which considers only (m+1)s/ε feasible frontiers 

between any two blocks. 
Proof:  By Lemma 1.4, we can restrict attention to schedules in which no small batch crosses an interval. 

Each block consists of a fixed number s of intervals. Fix an optimal schedule and consider any machine in a block 
. A large batch BiB j continuing from the preceding block finishes in one of the s intervals of block  which we 

denote by . We can round up the completion time of B

iB

i ⋅+)( jBxI j, C(Bj), to C′(Bj) where )()()(
jj BxBxj IRBC ⋅=′ ε for 

some integer 0≤i≤1/ε−1. This will increase the schedule value by only a 1+ε factor. Thus we can restrict the 
completion times of crossing batches to s/ε discrete time instants. Each machine realizes one of these possibilities. A 
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frontier can thus be described as a tuple (m1,m2,…,ms/ε) where mi is the number of machines with crossing batches 
finishing at the ith discrete time instant. Therefore there are at most (m+1)s/ε frontiers to consider. □ 

Let  denote the set of feasible frontiers between blocks  and . We are now ready to describe the 1+iF iB 1+iB

dynamic programming framework from Ref.[7]. The dynamic programming table entry O(i,F,U) stores the 
minimum total weighted completion time achievable by starting the set U of jobs before the end of block  while 
leaving a frontier of  for block B . Given all the table entries for some i, the values for i+1 can be 

iB

1+∈ iF F 1+i

computed as follows. Let W(i,F1,F2,V) be the minimum total weighted completion time achievable by scheduling 
the set of jobs V in block , with FiB 1 as the incoming frontier from block  and F1−iB 2 the outgoing frontier to 
block . We obtain the following equation. 1+iB

 )),,,1(),,((min),,1(
,1

VUFFiWVFiOUFiO
UVF i

−′++′=+
⊂∈′ +F

, 2+∈ iF F . (1) 

There are two difficulties in implementing the dynamic programming: First, we cannot maintain the table 
entries for each possible subset of jobs in polynomial time. Therefore we need to show the existence of approximate 
schedules that have compact representations for the set of subsets of jobs remaining after each block; Second, we 
need a procedure that computes the quantity W(i,F1,F2,V). The next two sections describe how to achieve these two 
objectives. 

3   Compact Representation of Job Subsets 

The first difficulty in implementing the dynamic programming is to show that it is sufficient to maintain 
information in the table for only a few (polynomial) subsets of jobs. To get around this difficulty, we are going to 
show that there exists a (1+ε)-approximate schedule such that one can represent compactly the information about 
jobs remaining after each block. 

Suppose that the current block under consideration is . Denote by IiB y the first interval in block . It’s 
obvious that the jobs released no earlier than R

1+iB

y cannot be scheduled in block . We also have the following iB

lemma. 
Lemma 3.1. With 1+ε loss we can assume that there is no small job available in Iy after we process block . iB

Proof: If there are small jobs available in Iy, we can start a batch with processing time at most εIy to schedule 
all of them at the end of the frontier of block , in particular right after the crossing batch with the smallest iB

completion time among all crossing batches. This will increase the schedule value by only a 1+ε factor. □ 
Thus we need only consider the different possibilities of the large jobs available in Iy. Consider the Pyl-jobs 

available in Iy (1≤l≤k=1+log1+ε(1/ε3)). By Lemma 1.7, these jobs cannot be released earlier than Ry−k+l. Based on 
the special property of parallel unbounded batch machines, we have the following observation: if a Pyl-job is started 
at time t, then all the Pyl-jobs released no later than t should be started no later than t. (as for the case of a single 
unbounded batch machine, the following observation is true: if a job j is started at time t, then all the jobs which are 
released no later than t and with processing time no more than pj should be started no later than t. However, this 
observation doesn’t hold for the case of parallel unbounded batch machines). Therefore the number of different 
possibilities of the Pyl-jobs available in Iy is at most k−l+1. Together with Lemma 1.6, the number of different 
possibilities of the large jobs available in Iy can be up-bounded by k!. Thus we get the following lemma. 

Lemma 3.2. There is a (1+ε)-approximate schedule S such that for each block  the following is true: iB

• There are g=k! sets  that can be constructed in polynomial time, and g
iii GGG ,,, 21 K

• Gi, the set of jobs remaining in S after block , is one of the . iB },,,{ 21 g
iii GGG K

4   Scheduling Jobs within a Block 

We turn to the second difficulty in implementing the dynamic programming. We will describe how to compute 
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W(i,F1,F2,V). We settle this problem for a relaxation. A (1+ε+ε2) decision procedure for computing W(i,F1,F2,V) 
outputs a schedule that is within (1+ε+ε2) of W(i,F1,F2,V) and shifts the frontier F2 by at most a (1+ε+ε2) factor. 
Clearly such a procedure suffices in order to compute a (1+O(ε))-optimal solution to the dynamic program given 
above. We now describe a (1+ε+ε2) decision procedure that runs in polynomial time for each fixed ε. For simplicity, 
we use the convention in this section that an optimal schedule refers to a best schedule for the set of jobs V that are 
scheduled in block  with incoming and outgoing frontiers specified by FiB 1 and F2. We use the analogous 

convention for a schedule or an approximate schedule. 
Let us fix a particular schedule. We delete all the jobs and small batches from this schedule, but retain all the 

empty large batches. We move these batches to the left as far as possible while keep them in the specified intervals. 
Thereby we get an outline, which specifies a start time, a processing time and a machine for each of the empty large 
batches. If an outline is obtained from an optimal schedule, we call it an optimal outline. 

Procedure FillingOutline 
Given an outline, do the following: 
Step 1. Fill the empty large batches in the order of non-decreasing completion times such that each of them 

contains all the currently available large jobs with processing times no more than that of the batch. 
Step 2. Stretch each interval Ix to create an extra space with length εIx right before the batch with the minimum 

start time among all the batches started in Ix. From time minjrj onwards, start a batch in each extra space 
to schedule all the currently available small jobs (if an interval is entirely covered by a crossing batch 
on each machine, then we need not stretch this interval). 

Step 3. Start a batch with length at most εIy to schedule the small jobs available in Iy at the end of the frontier 
of block , where IiB y denotes the first interval in block  (by Lemma 3.1). 1+iB

Lemma 4.1. Given an optimal outline, Procedure FillingOutline will find a (1+ε+ε2)-approximate schedule. 
Proof:  Denote by  the completion time of job j in the optimal schedule from which the given optimal opt

jC
outline is obtained. Denote by x(j) the index of the interval in which job j starts. Denote by Cj the completion time 
of job j in the schedule generated by Procedure FillingOutline. It’s easy to see that when Step 1 terminates, each 
large job j completes no later than . On the other hand, a simple volume summation argument shows that 

. It follows that for all jobs j, Step 2 and Step 3 ensure 

. Hence the lemma holds. □ 

opt
jC
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Lemma 4.2. An optimal outline has the following properties: 
1) Any two processing times of the batches which are started in the same interval on each machine are 

distinct; and 
2) The batches started in the same interval on each machine are processed successively in the order of 

increasing processing times. 
We define a machine configuration to be the restriction of an outline to a particular machine. We are going to 

enumerate over all potential outlines, among which there exists an optimal outline. We observe that there are at most 
1/ε large batches started in each interval. By Lemma 1.6, we know that the processing time of each large batch is 
chosen from k=1+log1+ε(1/ε3) values. Recall that block  consists of s=logiB 1+ε(1+1/ε) consecutive 

intervals. Combining Lemma 4.2, we can up-bound the number of different machine configurations by 
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We denote the different machine configurations as 1,2,…,Γ. An outline can now be defined as a tuple (m1, 
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m2,…,mΓ), where mi is the number of machines with configuration i. Therefore there are at most (m+1)Γ outlines to 
consider, a polynomial in m. 

It should be stressed that in each outline, the empty large batches started in the same interval on each machine 
are arranged in the order of increasing processing times (by Lemma 4.2). Out of these outlines we consider only 
those that are compatible with the incoming and outgoing frontiers F1 and F2. We invoke Procedure FillingOutline 
to deal with each such outline. From among the generated feasible schedules, we select the one with the minimum 
objective value. Clearly, if there is no feasible schedule generated, we simply set W(i,F1,F2,V)=+∞. Note that there 
are at most ms/ε empty large batches in each outline, and it takes O((ms/ε)log(ms/ε)) time to determine the order in 
which these batches are filled. By Lemma 4.1, we get the following lemma. 

Lemma 4.3. There is a (1+ε+ε2) decision procedure to compute W(i,F1,F2,V) that runs in time O((m+1)Γ(ms/ε) 
log(ms/ε)) where Γ<ks/ε. 

5   Conclusion 

We now return to the dynamic programming Eq.(1). By Lemmas 1.5 and 3.1, we know that any job will be 
processed after waiting at most 3 blocks. Therefore we need handle no more than 3n blocks by ignoring the empty 
blocks within which no job is processed. Combining Lemmas 2.1, 3.2 and 4.3, we get our main result. 

Theorem 5.1. There is a PTAS for P|rj,B≥n|∑wjCj that runs in time O(k!⋅(m+1)2Γ⋅n), where k=1+log1+ε(1/ε3), 
s=log1+ε(1+1/ε), Γ<ks/ε. 
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