ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.17, No.10, October 2006, pp.2063-2068 http://www.jos.org.cn

DOI: 10.1360/j0s172063 Tel/Fax: +86-10-62562563
© 2006 by Journal of Software. All rights reserved.

12+ 13 4
) ,
X , 250100)
Y , 264005)
3 , 100080)
X , 264025)

Minimizing Total Weighted Completion Time on Parallel Unbounded Batch Machines

LI Shu-Guang™?*, LI Guo-Jun™®, WANG Xiu-Hong*

!(School of Mathematics and Systems Science, Shandong University, Ji’ nan 250100, China)
2(Department of Mathematics and Information Science, Y antai University, Y antai 264005, China)
3(Institute of Software, Chinese Academy of Sciences, Beijing 100080, China)

4(School of Mathematics and Information, Ludong University, Yantai 264025, China)

+ Corresponding author: Phn: +86-535-6903498, E-mail: sgliytu@hotmail.com

Li SG, Li GJ, Wang XH. Minimizing total weighted completion time on parallel unbounded batch machines.
Journal of Software, 2006,17(10): 2063—-2068. http://www.j0s.org.cn/1000-9825/17/2063.htm

Abstract: This paper considers the problem of scheduling n jobs on m parallel unbounded batch machines to
minimize the total weighted completion time. Each job is characterized by a positive weight, a release time and a
processing time. Each unbounded batch machine can process up to B (B>n) jobs as a batch simultaneously. The
processing time of a batch is the longest processing time among jobs in the batch. Jobs processed in the same batch
have the same completion time, i.e., their common starting time plus the processing time of the batch. A polynomial
time approximation scheme (PTAS) for this problem is presented.

Key words: polynomial time approximation scheme; scheduling; parallel unbounded batch machines; total

weighted completion time; release times

n m
B>n
(PTAS). |
: TP301 | | CA | |
» Supported by the National Natural Science Foundation of China under Grant No0s.10271065, 60373025 (); the

Science and Technology Development Foundation of Tianjin Municipal Education Commission of China under Grant N0.20051519 (

)
Received 2004-05-08; Accepted 2005-07-08

© hEE

HOFIFFIT hetps/ www. jos. org. cn

2064 Journal of Software Vol.17, No.10, October 2006

A batch machine is a machine that can process up to B jobs simultaneously as a batch. The research on batch
machine scheduling is motivated by burn-in operations in semiconductor manufacturing™™. There are two variants of
the burn-in model: the unbounded model, in which B>n so that there is effectively no upper bound on the number of
jobs that can be processed in the same batch; and the bounded model, in which B<n so that there is a restrictive
upper bound. The unbounded model arises for instance in situations where compositions need to be hardened in
kilns, and akiln is sufficiently large that it does not restrict batch seizes'. In this paper, we consider the unbounded
model.

The problem that we study can be formulated as follows. There is a set of n jobs where job j is associated with
a positive weight w;, a processing time p; that specifies the minimum time needed to process the job, and a release
time r; before which it cannot be scheduled. The processing time of a batch is the longest processing time among the
jobs in the batch. The completion time of a batch is equal to its start time plus its processing time. Jobs processed in
the same batch have the same completion time, which is the completion time of the batch in which the jobs
contained. Once processing is begun on a batch, no job can be removed from the batch until the processing of the
batch is complete. The objective isto schedule the jobs on a set of midentical parallel unbounded batch machines so
as to minimize >w,C;, where C; denotes the completion time of job j in the schedule. This objective function is
referred to as the total weighted completion time. Using the notation of Graham et al.l¥, we denote this problem as
Plr;,B=n2w;C;, where P denotes that the scheduling environment contains m identical parallel machines. In
comparison, the single unbounded batch machine case (m=1) is denoted as 1|r;,B=n[>w;C;.

The single unbounded batch machine case has been extensively studied. Along with other results, P. Brucker et
al.™ presented an O(nlogn)-time exact algorithm for 1|B>n[Zw;C; (all r;=0). X. Deng and Y. Zhang!¥ proved that the
problem 1Jr;,B>n[>w;C; is NP-hard. X. Deng et al.® and S. Li et al.[¥ presented the first PTAS for 1]r;, B>n[ZC; (all
w;=1) and 1Jr;,B=n[>w;C; respectively. In fact, the ideas used in Ref.[6] can be generalized to get a PTAS for
Pmr;,B=nZw;C; (mis afixed number).

To the best of our knowledge, the problem PJr;,B>n[>w;C; (mis part of the input) has not been studied to date.
In this paper, we present a PTAS for this problem. The result is based on the techniques developed in Ref.[7], where
the authors presented the first PTASs for the classical scheduling problem (B=1) of minimizing total weighted
completion time in the presence of release times in various machine models. Even though the general framework in
our study follows that in Ref.[7], the special property of unbounded batch machines makes the detailed analysis
quite non-trivial. For example, dealing with small jobs becomes different from their methods. Scheduling jobs
within a block cannot trivially follow their method and demands special treatment.

This paper is organized as follows: In Section 1, we discuss some general techniques and lemmas that apply
throughout the paper. In Section 2, we present an overview of the dynamic programming framework. In Section 3,
we show that there exists a (1+¢&)-approxi mate schedule such that one can represent compactly the information about
jobs remaining after each block. In Section 4, we focus on the case of scheduling jobs within a block. We conclude
this paper in Section 5.

1 Preliminaries

To establish a polynomial time approximation scheme (PTAS), for any given positive number ¢, we need find a
solution within a (1+¢) factor of the optimum in polynomial time. In this section, we aim to transform any input into
one with a simple structure. We say, as in Ref.[7], a transformation produces 1+0O(¢) loss if it potentially increases
the objective function value by 1+0(s). To simplify notations we will assume throughout the paper that 1/¢ is
integral and e<1/4 (otherwise we simply work with & such that ¢<g, 1/¢ is integral and £<1/4). We call a job
available if it has been released but not yet been scheduled.

© DEEREBAAAIFUN bt/ www. jos. org. cn

2065

Some of the lemmas mentioned in subsequent sections, introduced by Ref.[7] for the classical scheduling
problems (B=1), are still effective for our problem. For simplicity, we omit proofs when we present these lemmas.

Lemma 1.1, With 1+¢ loss, we can assume that all processing times and release times are integer powers of
1+e.

For an arbitrary integer x , we define R:=(1+&)". As a result of Lemma 1.1, we can assume that all release
times are of the form R, for some integer x. We partition the time interval (0,0) into disjoint intervals of the form
I:=[Rw,R+1] (Lemma 1.2 below ensures that no jobs are released at time 0). We will use I, to refer to both the
interval and the size (Ry.;—R,) of the interval. We will often use the fact that 1,=¢R,.

Lemma 1.2, With 1+¢ |oss, we can enforce r;>p; for all jobsj.

L emma 1.31"). Each batch crosses at most s:5 logy, (1+1/¢) | intervals.

As in Ref.[7], we classify jobs (batches) as small and large. We say that a job j is small with respect to an
interval I, if p<ely, and large otherwise. We say that a batch is large if it contains at |east one large job, and small
otherwise.

Lemma 1.4/, With 1+¢ loss, we restrict attention to schedules in which no small batch crosses an interval.

The following lemma shows that each job becomes small after waiting a constant number of intervals.

Lemma 1.5. Let k:=[1+l0g;+(1/¢%)], r;=R.. Then job j is small in interval lx.

e(1+¢)"

Lemma 1.6. The number of distinct processing times of available large jobs in each interval is at most
k=l 1+l0gy, (/%) .

Proof: Consider interval |,. For each job j in the set of the available large jobsin I, Lemma 1.2 yields R&p;.

Proof: ByLemmalz2 weget p; < O

On the other hand, sincej is large, we get pjngX:gZRx. Since all job processing times are integer powers of 1+¢, the
number is as claimed. O

Let Py<...<Py be the k distinct processing times of the available large jobs in interval 1, regardless of the fact
that some of them may not exist. We call the jobs with processing time Py, the Py-jobs, [=1,2,... k.

We combine Lemmas 1.5 and 1.6 to get a simple observation.

Lemma 1.7. The Py-jobs cannot be released earlier than Ry (1<I<K).

2 The Dynamic Programming Framework

In this section, we give an overview of the dynamic programming framework from Ref.[7].

The basic idea is to decompose the time horizon into a sequence of blocks, say B,,B,,..., each containing
sl log;.(1+1/¢) | consecutive intervals. By the choice of the block size and Lemma 1.3, no batch crosses an entire
block. In other words batches that start in B, finish either in B, or B,,,. A frontier describes the potential ways
that batches in one block finish in the next.

Lemma 2.1 There exists a (1+¢)-approximate schedule which considers only (m+1)¥ feasible frontiers
between any two blocks.

Proof: By Lemma 1.4, we can restrict attention to schedules in which no small batch crosses an interval.
Each block consists of a fixed number s of intervals. Fix an optimal schedule and consider any machine in a block
B; . A large batch B; continuing from the preceding block finishes in one of the s intervals of block B; which we

denote by IX(BJ_) . We can round up the completion time of B;, C(B;), to C'(B;) where C'(B;) = RX(BJ_) +i-¢-1 x(8)) for

some integer O<i<l/e-1. This will increase the schedule value by only a 1+¢ factor. Thus we can restrict the
compl etion times of crossing batches to g/« discrete time instants. Each machine realizes one of these possibilities. A

© DEEREBAAAIFUN bt/ www. jos. org. cn

2066 Journal of Software Vol.17, No.10, October 2006

frontier can thus be described as a tuple (my,m,,...,My,) where m; is the number of machines with crossing batches
finishing at the ith discrete time instant. Therefore there are at most (m+1)¥* frontiers to consider. O

Let F,,; denote the set of feasible frontiers between blocks B; and B,,;. We are now ready to describe the
dynamic programming framework from Ref.[7]. The dynamic programming table entry O(i,F,U) stores the
minimum total weighted completion time achievable by starting the set U of jobs before the end of block B; while
leaving a frontier of F eF_, for block B,,;. Given al the table entries for some i, the values for i+1 can be
computed as follows. Let W(i,F1,F,,V) be the minimum total weighted completion time achievable by scheduling
the set of jobs V in block B, , with F; as the incoming frontier from block B, ; and F, the outgoing frontier to
block B,

i+l

We obtain the following equation.
O(i +1, F,U):F, IEnlr\) U(O(i,F’,V)+W(i +LF,FU-V)), FeF,,,. (1)
RtV

There are two difficulties in implementing the dynamic programming: First, we cannot maintain the table
entries for each possible subset of jobs in polynomial time. Therefore we need to show the existence of approximate
schedules that have compact representations for the set of subsets of jobs remaining after each block; Second, we
need a procedure that computes the quantity W(i,F1,F»,V). The next two sections describe how to achieve these two
objectives.

3 Compact Representation of Job Subsets

The first difficulty in implementing the dynamic programming is to show that it is sufficient to maintain
information in the table for only a few (polynomial) subsets of jobs. To get around this difficulty, we are going to
show that there exists a (1+&)-approximate schedule such that one can represent compactly the information about
jobs remaining after each block.

Suppose that the current block under consideration is B;. Denote by I, the first interval in block B,,. It's
obvious that the jobs released no earlier than R, cannot be scheduled in block B;. We also have the following
lemma.

Lemma 3.1. With 1+¢ loss we can assume that there is no small job availablein |, after we process block B; .

Proof: If there are small jobs available in |y, we can start a batch with processing time at most &l to schedule
all of them at the end of the frontier of block B, in particular right after the crossing batch with the smallest
completion time among all crossing batches. This will increase the schedule value by only a 1+¢ factor. O

Thus we need only consider the different possibilities of the large jobs available in |,. Consider the Py-jobs
available in I, (1<I<k=[1+l0gy. (/%)]). By Lemma 1.7, these jobs cannot be released earlier than R, .. Based on
the special property of parallel unbounded batch machines, we have the following observation: if a Py-job is started
at time t, then all the Py-jobs released no later than t should be started no later than t. (as for the case of a single
unbounded batch machine, the following observation istrue: if ajob j is started at timet, then all the jobs which are
released no later than t and with processing time no more than p; should be started no later than t. However, this
observation doesn’t hold for the case of parallel unbounded batch machines). Therefore the number of different
possibilities of the Py-jobs available in |, is at most k—I+1. Together with Lemma 1.6, the number of different
possibilities of the large jobs available in I, can be up-bounded by k!. Thus we get the following lemma.

Lemma 3.2. Thereis a (1+¢)-approximate schedule S such that for each block B; thefollowing istrue:

e Thereareg=k! sets G',G?,...,G? that can be constructed in polynomial time, and

e G, theset of jobs remaining in Safter block B, , isone of the {G',G?,...,G%} .

4 Scheduling Jobs within a Block

We turn to the second difficulty in implementing the dynamic programming. We will describe how to compute

© PEBSFERSAIIFT hipd/ www. jos. org. cn

2067

W(i,F1,F,,V). We settle this problem for a relaxation. A (1+&+&%) decision procedure for computing W(i,F1,F5,V)
outputs a schedule that is within (1+&+£?) of W(i,F1,F,,V) and shifts the frontier F, by at most a (1+e+&?) factor.
Clearly such a procedure suffices in order to compute a (1+O(¢))-optimal solution to the dynamic program given
above. We now describe a (1+s+&%) decision procedure that runsin polynomial time for each fixed . For simplicity,
we use the convention in this section that an optimal schedule refers to a best schedule for the set of jobs V that are
scheduled in block B, with incoming and outgoing frontiers specified by F; and F,. We use the analogous
convention for a schedule or an approximate schedule.

Let us fix a particular schedule. We delete al the jobs and small batches from this schedule, but retain all the
empty large batches. We move these batches to the left as far as possible while keep them in the specified intervals.
Thereby we get an outline, which specifies a start time, a processing time and a machine for each of the empty large
batches. If an outline is obtained from an optimal schedule, we call it an optimal outline.

Procedure FillingOutline

Given an outline, do the following:

Step 1. Fill the empty large batches in the order of non-decreasing completion times such that each of them
contains all the currently available large jobs with processing times no more than that of the batch.

Step 2. Stretch each interval |, to create an extra space with length &l right before the batch with the minimum
start time among all the batches started in |,. From time min;r; onwards, start a batch in each extra space
to schedule all the currently available small jobs (if an interval is entirely covered by a crossing batch
on each machine, then we need not stretch thisinterval).

Step 3. Start a batch with length at most &l to schedule the small jobs available in |, at the end of the frontier
of block B, , where |, denotesthe first interval inblock B;,, (by Lemma3.1).

Lemma 4.1. Given an optimal outline, Procedure FillingOutline will find a (1+&+£%)-approximate schedule.

Proof: Denote by Cf”t the completion time of job j in the optimal schedule from which the given optimal

outline is obtained. Denote by x(j) the index of the interval in which job j starts. Denote by C; the completion time
of job j in the schedule generated by Procedure FillingOutline. It's easy to see that when Step 1 terminates, each

large job j completes no later than C}’p‘. On the other hand, a simple volume summation argument shows that

DA <R =eld+e)- Ry <(e+&%)CP® . It follows that for al jobs j, Step 2 and Step 3 ensure

x<x(j)
C, <(l+&+£%)-C™ . Hence the lemma holds. m

Lemma 4.2. An optimal outline has the following properties:

1) Any two processing times of the batches which are started in the same interval on each machine are
distinct; and

2) The batches started in the same interval on each machine are processed successively in the order of
increasing processing times.

We define a machine configuration to be the restriction of an outline to a particular machine. We are going to
enumerate over al potential outlines, among which there exists an optimal outline. We observe that there are at most
1/¢ large batches started in each interval. By Lemma 1.6, we know that the processing time of each large batch is
chosen from k=| 1+log;,,(1/%)] values. Recall that block B, consists of s=[log;.(1+1/5)] consecutive

intervals. Combining Lemma 4.2, we can up-bound the number of different machine configurations by

B

We denote the different machine configurations as 1,2,...,7" An outline can now be defined as a tuple (m,

© PEBSFERSAIIFT hipd/ www. jos. org. cn

2068 Journal of Software Vol.17, No.10, October 2006

My,...,m7), where my is the number of machines with configuration i. Therefore there are at most (m+1)’ outlines to
consider, a polynomial in m.

It should be stressed that in each outline, the empty large batches started in the same interval on each machine
are arranged in the order of increasing processing times (by Lemma 4.2). Out of these outlines we consider only
those that are compatible with the incoming and outgoing frontiers F; and F,. We invoke Procedure FillingOutline
to deal with each such outline. From among the generated feasible schedules, we select the one with the minimum
objective value. Clearly, if there is no feasible schedule generated, we simply set W(i,F1,F,,V)=+w. Note that there
are at most ms/e empty large batches in each outline, and it takes O((ms/&)log(ms/¢)) time to determine the order in
which these batches are filled. By Lemma 4.1, we get the following lemma.

Lemma 4.3. There is a (1+s+5%) decision procedure to compute W(i,Fy,F,,V) that runsin time O((m+1)’ (ms/s)
log(ms/)) where 7<k¥%,

5 Conclusion

We now return to the dynamic programming Eq.(1). By Lemmas 1.5 and 3.1, we know that any job will be
processed after waiting at most 3 blocks. Therefore we need handle no more than 3n blocks by ignoring the empty
blocks within which no job is processed. Combining Lemmas 2.1, 3.2 and 4.3, we get our main result.

Theorem 5.1. There is a PTAS for P|r;,B>n[Xw;C; that runs in time O(K!-(m+1)*"-n), where k= 1+l0gy. (1/%],
s logy. (1+1/e)], 7=k,

References:
[1] LeeCY, Uzsoy R, Martin Vega LA. Efficient algorithms for scheduling semiconductor burn-in operations. Operations Research,
1992,40:764-775.

[2] Brucker P, Gladky A, Hoogeveen H, Kovalyvov MY, Potts CN, Tautenhahn T, van de Velde SL. Scheduling a batching machine.
Journal of Scheduling, 1998,1:31-54.

[3] Graham RL, Lawler, Lenstra JK, Rinnooy Kan AHG. Optimization and approximation in deterministic sequencing and scheduling:
A survey. Annals of Discrete Mathematics, 1979,5:287-326.

[4] Deng X, Zhang Y. Minimizing mean response time in batch processing system. In: Asano T, et al., eds. COCOON’99. LNCS 1627,
Springer-Verlag, 1999. 231-240.

[5] DengX, Feng H, Zhang P, Zhao H. A polynomial time approximation scheme for minimizing total completion time of unbounded
batch scheduling. In: Eades P, Takaoka T, eds. ISAAC 2001. LNCS 2223, Springer-Verlag, 2001. 26-35.

[6] Li S, Li G, Zhao H. A linear time approximation scheme for minimizing total weighted completion time of unbounded batch
scheduling. OR Trans, 2004,8(4):27-32.

[71 Afrati F, Evripidis, Chekuri C, Karger D, Kenyon C, Khanna S, Milis I, Queyranne M, Skutella M, Stein C, Sviridenko M.
Approximation schemes for minimizing average weighted completion time with release dates. In: Proc. of the 40th Annual Symp.
on Foundations of Computer Science. New Y ork, 1999. 32-43.

WANG Xiu-Hong was born in 1964. She

is a professor of School of Math. & Info.,

Ludong University. Her current research

areas are theoretical computer science and
computer networks.

LI Shu-Guang was born in 1970. He is a
Ph.D. candidate at the School of Math. &
Sys. Sci., Shandong University. His current
research areas are combinatorial
optimization and theoretical computer
science.

LI Guo-Jun was born in 1958. He is a
professor and doctoral supervisor of School
of Math. & Sys. Sci., Shandong University.
His current research areas are graph theory,
combinatorial optimization and theoretical
computer science.

© rhiEpk

Bt FI9TET httpy/ www. jos. org. cn

	Preliminaries
	The Dynamic Programming Framework
	Compact Representation of Job Subsets
	Scheduling Jobs within a Block
	Conclusion

