ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.17, No.5, May 2006, pp.1042-1050 http://www.jos.org.cn
DOI: 10.1360/j0s171042 Tel/Fax: +86-10-62562563
© 2006 by Journal of Software. All rights reserved.

( , 411105)
An Approach for Short-Term Prediction on Time Series from Parameter-Varying Systems

XIAO Fen, GAO Xie-Ping"

(College of Information Engineering, Xiangtan University, Xiangtan 411105, China)
+ Corresponding author: Phn: +86-732-8293249, Fax: +86-732-8293249, E-mail: xpgao@xtu.edu.cn

Xiao F, Gao XP. An approach for short-term prediction on time series from parameter-varying systems.
Journal of Software, 2006,17(5):1042—1050. http://www.jos.org.cn/1000-9825/17/1042.htm

Abstract: Time series prediction is a very important problem in many applications and the current prediction
techniques are nearly al based on the Takens' embedding theorem. Many realistic systems are parameter-varying
systems, and the embedding theorems are invalid, predicting the behavior of parameter-varying systems is more
difficult. This paper proposes the novel prediction techniques for parameter-varying systems reconstruction, which
are based on wavelet neural network (WNN) and multiwavelets neural network (MWNN). These techniques absorb
the advantages of high resolution of wavelet and learning of neural networks. The significant improvement is that
the error’s functions of both networks are convex, and the problem of poor convergence and undesired local
minimum can be solved remarkably. Ikeda time series generated by the parameter-varying systems is adopted to
check the prediction performance of the proposed models. The numerical experiments show that the three proposed
models are feasible, MWNN has the top performance, and WNN could lead the better results than NN in the
prediction of the parameter-varying systems.
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1 Introduction

Time series is a sequence of observed data and usually ordered in time. Real-life time series can be taken from
physical science, business, management, social and behavioral science, economics, etc. Time series prediction,
which is based on the idea that the time series carry within them the potential for predicting their future behavior, is
a very important problem in many applications. Analyzing observed data produced by a system can give both the
good insight into a system and the knowledge about laws underlying the data.

Numerous studies on time series prediction have been undertaken by a lot of researchers. Unfortunately, most
of them are related to the construction of structure-invariable system whose parameter values do not change all the
time!>". In fact, many realistic systems are naturally structure-variable, which means that the parameter values of
these systems are always changing with time. The stock system, the financial expenditure system for one country,
the seismic system and the climatic system are such examples since the environments of these systems change
rather rapidly before they settle down at some asymptotic states. In this case, the embedding theorems are invalid,
which means that the parameter-varying systems reconstruction is more difficult than parameter-invariable systems
prediction. Only few related results can be found in Ref.[8], and some theoretical problems still need to be
investigated.

Some recent works show that feed-forward neural network (NN), trained with backpropagation and a weight
elimination algorithm, outperforms traditional nonlinear statistical approaches in time series prediction!*™. In spite
of its numerous advantages, like robustness and ability to learn, neural network is hard to determine its structure and
it often converges to local minimum. At the same time, wavelet analysis has been developed recently as a powerful
analytica tool!®%.
properties, for example, in making local analysis. Recently, due to the similarity between wavelet decomposition
and one-hidden-layer neural network, the idea of combining both wavelet and neural network has been proposed in

It has been widely applied to signal analysis and feature extraction due to some excellent

various works. The resulting structure is called wavelet neural network (WNN). They show that the training and
adaptation efficiency of the wavelet neural network is better than other neural networks®®. Furthermore, using
wavelet in the framework of neural network facilitates the theoretical analysis of its asymptotic properties such as
universal approximation and consistency, and helps us to determine the structure of neural network. Meanwhile,
multiwavelets as a generalization of wavelet appear to have better properties than traditional wavelet, which makes
anew way of the theory and application study of wavelet theory. It is possible to construct a basis for multiwavelets
with compact support, orthogonal, approximation order greater than 1 and symmetric properties, which are not all
simultaneously possible for traditional wavelet basis™. And this greatly motivates us to constitute a new kind of
wavelet neural networks, called as multiwavelets neural network(MWNN)!*214 and try to use it for predicting time
series from parameter-varying systems. The mean square error function of the network is convex respect to all
training parameters, so the problem of poor convergence and undesired local minim are avoided remarkably. Hence
one may expect that this wavelet network is a more powerful tool for predicting chaotic series compared to other
prediction techniques.

Principa Components Analysis (PCA)*® is a canonical and widely used method for dimensionality reduction
of multivariate data. Applications include the exploratory analysis and visualization of large data sets, as well as the
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denoising and decorrelation of inputs for algorithms in statistical learning. PCA as a prevalent analysis tool has two
advantages: the order of uncorrelated principal components is explicitly given in terms of their variances, and the
underlying structure of series can be revealed in using the first few principal components.

The main contribution of the present paper is the use of WNN/MWNN for short-term prediction on time series
generated from the parameter-varying systems. And the corresponding prediction techniques are developed. We
check the prediction performance of the proposed models by measuring the accuracy of the prediction results for
available data sets. Time series generated by Ikeda map is chosen for the purposes of checking prediction ability. In
fact, applying the WNN/MWNN for parameter-varying system reconstruction is a new attempt. Fortunately, for the
selected prediction tasks, we get promising results by using these three networks. From the simulation results, WNN
could lead better results than NN, MWNN appears to yield the best prediction performance and it should to be
recommended for further prediction study.

The rest of paper is organized as follows. In Section 2, after a brief introduction of parameter-varying systems,
we discuss the short-term predictability for them. Section 3 provides an overview of wavelet analysis, and the
detailed description of the wavelet/multiwavelets neural network architecture and prediction algorithm is also
presented. Section 4 reports the computer simulations for time series prediction with parameter-varying systems.
Finally, in Section 5, a conclusion is provided.

2 Parameter-Varying Dynamical Systems

In many realistic systems, the parameter values are always changing with time, we call this kind of systems as
parameter-varying dynamical systems. In some such systems, we can clearly see the phenomenon of
period-doubling bifurcations in time if the parameter values vary relatively slow. Such bifurcations are obviously
different from the usual period-doubling ones.

The following parameter-varying dynamical system is considered:

X(n+1)=g(X(n),(n)) (1)
where g:R"™xRP—R™ is a continuous smooth function, and z(n) is a p-dimensional parameter vector of the system at
time n with its components increasing monotonically with n. Suppose we can only obtain one-dimensional
observations from this system, we record the x-component value of each iterations as x,. In this case, Takens
theorem and its extensions are at least in principle invalid since the given system has no asymptotic sets.
Reconstruction of parameter-varying systems will be more difficult because of the lack of the related theory.

Remarkably, in the last two decades, there has been a lot of work trying to apply the chaotic dynamics to many
natural systems. In principle, many of these natural systems such as biological, ecological and economical systems
belong to parameter-varying systems. Moreover, it is found recently that every parameter-varying system can be
transferred into a corresponding higher-dimensional parameter-invariable system by adding some new variables so
that the nonlinear prediction algorithms, such as neural networks, wavelet, and chaos analysis, may work well for
parameter-varying systems. This result encourages us to apply these prediction algorithms to reconstruct
parameter-varying systems.

Consider that there is a time series x;,%,,...,X, from a parameter-varying system, according to the analysis
above, there exists a function F such that

X =F (Xn-dsXn-(d-1)» - - - X¥n-1) 2
The problem of predictability is how to find a good estimate of F based on the past history of x,, on which various
techniques of nonlinear deterministic prediction have been developed. In this paper, we will use the prediction
algorithm based on the WNN/MWNN.
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3 Method

3.1 Thewavelet/multiwavelets neural network model

The multiresolution analysis (MRA) introduced by Mallat et al.*™ gives us a uniform framework to construct
the wavelet/multiwavelets basis. Let ¢:=(¢1,é,....4)", d1.éo.....4€LX(R), r>1, satisfy
#(9) = Y Rg(2x-k), xeR

kez
for some rxr matrices Py, such that the collection of integer translations { ¢(-—k):1<I<r,keZ} constitutes a Riesz
basis of V. Such functions ¢i,¢,,...,¢, are called (multi)-scaling functions, and they are said to generate a
MRA ...cV_cVcVic... of LY(R), where Vj:={f:f(2‘j-)eV0}, jeZ. Especidly, if {#(-—Kk):1<I<r,keZ} forms an
orthonormal basis of Vo, then (V) is called an orthogonal MRA.

M

Definegy, , (X) =22 ¢, (2" x-k),M,k e Z ,[={ o(d)|o(d)=1®®... o} , where o is any integer from 1 tor,
and @ is connection. For example, 206=26.
Using tensor product of one-dimensional (multi)-scaling functions, we construct a set of orthogonal basis of

subspace Vy, as:
d
Dy (K X000 Xy ) = {H%ﬁp (Xp)|0'(d) el 4 'kp € Z}, K = (K, Ky Ky) 3
p=1

From the theory of MRA, when M is sufficiently large, one has L3R%~Vy, that is, for VfeL%R?), V&0,
IfyeVw, such as:

d d
fu= Y X< FGe Yol [ Iow, (v,) > 1ok, (%) (4)
o(d)ely kpez p=1 p=1
p=12,--,d

when M is larger enough, there is ||fu—f||<e, where ||-|| indicates L%(R%) norm,(-,-) is the inner product.
In many practical problems, since either the (multi)-scaling functions or the functions have finite support, the
sum about k;, in Eq.(4) contains only a finite terms Jy, so we can rewrite the approximation of any fe L%(RY) as:
- - d
Fan (X3 Xg ey Xg) = Z ZCEFE)H¢;1D (xp)1 K = (K, Ky, o0 Kyg) 5
o(d)e g kpedu p=1
The above equation shows that a function can be approximated by an orthogonal function sets. Since Eq.(5) has a
linear-in-parameter structure which can be realized by a neural network, the coefficients éﬁf(j’ can be regarded as

the weights of the neural networks, called wavelet neural network (WNN) for r=1, and multiwavelets neura
network (MWNN) for r>2. The proposed WNN/MWNN are made of three layers: the input layer, the hidden layer
and the output layer. In this paper, we just discuss separable
wavelet/multiwavelets in the case of L%R%to deal with the high

dimensional problem. A schematic diagram of the networks is Sy " HQ_
presented in Fig.1. The following lemma is valuable to calculate the - ¥ W L
size of the hidden layer. 3 e Lyin

Lemma 1. Suppose the support of @(Xy,X,,...,Xq) is [0,u]%, and T )

the support of the approximated function F is[0,1]% then the number of
nodes in the hidden layer must be rf(2Y+u-1)%, and the set of the
threshold value should be Jy={-u+1,...,2"-1} .

Fig.l WaveletsMultiwavelets neural
network structure (d=2)

3.2 Prediction algorithm

There are many training algorithms for our network. In order to compare the prediction performance with the
neural network, the gradient-based techniques for updating the parameters are used for the given network. Because
wavelet networks are linear about the training parameters (connecting weights from hidden layer to output layer),
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the mean square error’s function of the network is convex. Therefore gradient-based techniques can avoid the
problem of poor convergence and undesired local minimum remarkably.

The basic steps of our algorithm for the reconstruction of parameter-varying systems by WNN/MWNN are as
follows:

Step 1. Data pre-processing: The inputs to a system can be anything from external forcing to internal state
variables. For the complex time series, the dimension of input information is often too high, and thus an extremely
large number of hidden neurons and training examples should be used to train the networks. A preferable strategy is
to attempt to reduce the dimension of the input data, and techniques like principal components are often applied to
achieve a more compact, more stable model.

Given a training set Ty ={(X', ¥"): ¥ = X4, X' = (X, X100 Xirg1)si =L, N }, Where x; is the time series

generated by the parameter-varying system. The new “constructed” time series by using PCA on initial inputs are
then used as the inputs of the networks.

Step 2. Select a small integer for M (for example M=0), calculate the size of the hidden layer by Lemma 1, the
threshold value of each hidden node and the connection weights between the input layer and hidden layer are
decided.

Step 3. Initialize CJ'? by randomly assigning values between 0 and 1, or by the following equation:
CRi = Z v 16 o (5) -
=712
Step 4. Calculate the actual output of the network using the present values of Cg(d .

Step 5. Adjust CJ@ to minimize thefollowing square error:

Eun = "0 -y || :_ Z(Xk fun (Xk-vxk-zv---rxk-d))z

(odyh)eTy
where o' and y' are the actual and desired outputs when the input vector is X. By combining gradient descent
techniques and delta rule to adjust the connection weights, we have:

. N ¢ 2 A
ACSD _ 3 Fun (T Tun) +aACTO™ (6)
o
where parameters 4,a<(0,1), 1 is called the learning rate, and « is the momentum.
Step 6. Repeat steps 4~5 until the error Ey  is less than a given tolerant value.

4 Simulation Results

In order to investigate the capability of the proposed networks for forecasting the future state of
parameter-varying system, the experiments have been performed on the same chaotic time series using three
different network models, which are NN, WNN and MWNN with the same network structure. A time series
generated by the Ikeda map with one parameter as a variable is chosen. It is described by the following equations”®!:

Xner =1+ 41, (X, COS(t) -y, Sin(t))
Yo = 45 (X, SIN(t) + y, cos(t)) (M
Lo = f, +107(1-0.5sin(n))

15
1+ X2 +y2

Iterate Eq.(7) with initial conditions xo=0.87,y,=—0.40, and z©=—0.34 until s, increases to 0.7 (10,400
iterations). We record the x-component value of each iteration and show the time series x,,n=0,1,2,...,10,400 in

where t=0.8-
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Fig.2.
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Fig.2 Time series generated by Ikeda map

The time series is divided into three subsets referred to: the chaotic subset, the training and test subsets. The
first 400 points are abandoned for their irregularity. The training set consists of 400 data points X400,X401,- - - X799, WE
use the training set to fit F by using WNN/WNN and make one-step prediction on the next 200 values.

In our experiments, we reduce the input dimension to 2 by PCA. For the training set, we can calculate its
covariance matrix R, the eigenvalues and the corresponding eigenvectors. The eigenvalues take the following
values: 1,=0.1002,1,=0.0053,15=0.0018. Obviously, in this case, the first two eigenvectors contains aimost al the
energy. So the data could be well approximated with a two-dimensional representation.

We choose Daubechies-3 scale function in Ref.[10] as the activation function of the hidden layer in WNN,

5
which is descried as #(x)=v/2Y H,g(2x—k) , where H,=0.3326705529500825, H,=0.8068915093110924,
k=0

H,=0.4598775021184914, H3=—0.1350110200102546, H,=—0.0854412738820267, Hs=0.0352262918857095.
The activation function of the hidden layer in MWNN is assumed to be orthonormal multi-scaling functions'*!
supported on [0,2] describesin Fig.3:

1 1 10 d: 1

: SN 2 32
o)=Y P@(2x-k), P, = P& P, =

R I A R L R P

4 4 4 4

Using Lemma 1, we can get that the numbers of the hidden neurons in WNN and MWNN are 25,16
respectively. For the convenience of comparison, we limit the support of the activation function of WNN on
[0,4](Fig.4), therefore the number of the hidden neurons in WNN is 16, the same with the MWNN. So the three
kinds of networks with the same structure 2-16-1 (i.e., the input vector is composed of 2 components, the hidden
layer is composed of 16 neurons, and the output layer is composed of 1 neuron) can be obtained. Although the same
network structure, the numbers of the free parameters are different (there are only 17 parameters in the
multiwavel ets neural network and wavelet neural network while neural network has 65 parameters).

In the experiments, in order to compare the capability of predicting the future state of parameter-varying
systems, some error functions are defined as follows:
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k-1
5 \2
1 4 , ,‘ le(y| - yl) 1 K-1 Y — g/
Mse=——>"(y, - ¥)?, Errorl==——————, Error2=——->y |=—=-,
2= 9) - iy
k-1 Yy, — )A/ k-1 R
Error3=max ——|, Error4= m?x(|yi -y |) .
1= Yi =
where m=400, 1=800, k=1000, y; is the desired output and ¥, denotes the actual output.

20 e S 1.4
15" 12} 1
1.0 Loy |
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Fig.3 Multi-scaling functions Fig.4 Daubechies scale function

Experiments are conducted on lkeda time series to testify the prediction performance of the networks. To
ensure the relevance of the comparisons, two types of training conditions of networks are recommended in our
experiments to give a proper value (namely 20000) for limiting the number of training epochs and impose a desired
value (namely 0.0001) as the Mse goal. Interest will first focus on the main features of the training procedures, and,
afterwards, emphasis is placed on the prediction quality of the identified models. For a given training times, the
achieved Mse is regarded as the training results listed in the first column of Table 1. The first column of Table 2
records the training times with the given tolerant Mse. The prediction quality of the trained networks is evaluated in
terms of prediction errors for test subsets, and the mean and minimum errors (Errorl, Error 2, Error3, Error 4) over
50 simulations with two different stop training criterions are shown in Table 1 and Table 2.

Table1l Quality of networks depending on the training epochs 20000

Network Mse Error 1 Error 2 Error 3 Error 4
MWNN  7.625e-5 5.002e-4 6.755e-3 1.829e-2 1.679e-2
Mean error WNN 8.865e-5 6.641e-4 9.583e-3 1.917e-2 1.523e-2

NN 9.099e-5 8.357e-4 1.1l1le-2 2515e-2 2212e-2

MWNN  2.625e-5 1.98le-4 2.583e-3 8.906e-3 6.823e-3

Minimum error WNN 5.233e-5 2.322e-4 3.064e-3 9.007e-3 7.617e-3
NN 2.737e-5 2.21le-4 2.660e-3 9.134e-3 9.731e-3

Table2 Quality of networks depending on the tolerant Mse 0.0001

Network  Training times Error 1 Error 2 Error 3 Error 4

MWNN 1.302e+4 5.995e-4 7.820e-3 2.230e-2 2.116e-2

Mean error WNN 1.395e+4 6.61le-4 9.593e-3 1.802e-2 1.468e-2
NN 1.905+4 9.233e-4 1.205e-2 2.646e-2  2.399e-2

MWNN 1898 2453e-4 2.263e-3 9.956e-3  7.794e-3

Minimum error WNN 795 2457e-4 3.282e-3 8.628e-3 6.839e-3
NN 452 3.052e-4 3.545e-3 1.024e-2  9.290e-3

According to the definitions, we think that the measurements of average error Error 1 and Error 2 seem to be
the more important indexes to check the network prediction performance than Error 3 and Error 4. From Table 1 and
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Table 2, we conclude that these three kinds of networks all can be used to reconstruct the parameter-varying
systems, and the performance of WNN are better than NN, while MWNN appear significantly better than WNN
although the max relative error (Error 3) and the max absolute error (Error 4) between predicted and actual values
trained by MWNN are slightly bigger than those obtained from WNN.

5 Conclusions

In this work, we have presented two prediction models that adopt the ideas from the wavelet analysis and
neural networks, then we use them for forecasting of time series generated from the parameter-varying system. The
algorithm for predicting the time series has been described in detail. The performance of the proposed networks is
tested in predicting the time series generated by the Ikeda map with one parameter as a variable. The experimental
results show that the MWNN has better capabilities than the WNN in forecasting the parameter-varying system. And
they also show that the WNN performs better than NN on lkeda time series. In this paper, the dimensionality
reduction of the input data by PCA accounts for obtaining more precise and reasonable numerical results, and the
size of the hidden layer is reduced.

As pointed out above, the application of the MWNN in conjunction with PCA gives satisfactory results for
predicting time series from parameter-varying systems, and this approach would probably be preferable in practical
situations.
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