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Abstract:  Time series prediction is a very important problem in many applications and the current prediction 
techniques are nearly all based on the Takens’ embedding theorem. Many realistic systems are parameter-varying 
systems, and the embedding theorems are invalid, predicting the behavior of parameter-varying systems is more 
difficult. This paper proposes the novel prediction techniques for parameter-varying systems reconstruction, which 
are based on wavelet neural network (WNN) and multiwavelets neural network (MWNN). These techniques absorb 
the advantages of high resolution of wavelet and learning of neural networks. The significant improvement is that 
the error’s functions of both networks are convex, and the problem of poor convergence and undesired local 
minimum can be solved remarkably. Ikeda time series generated by the parameter-varying systems is adopted to 
check the prediction performance of the proposed models. The numerical experiments show that the three proposed 
models are feasible, MWNN has the top performance, and WNN could lead the better results than NN in the 
prediction of the parameter-varying systems. 
Key words:  wavelet neural network; multiwavelets neural network; time series prediction; parameter-varying 

dynamical system 

摘  要:  时间序列预测是一类非常重要的问题,但基本上局限于参数不可变问题的研究,而对实际问题中经常
出现的更重要的参数可变系统的预测,由于构成几乎所有已有预测技术基础的 Taken嵌入定理不再成立,所以这
方面的研究成果极少.使用一种将(多)小波变换与反向传播神经网络相结合的新型网络结构——(多)小波神经
网络,尝试对参数可变时间序列的预测.因为(多)小波神经网络的误差函数是一个凸函数,这在一定程度上可以
避免经典神经网络容易陷入局部极小、收敛速度慢等问题.对著名的 Ikeda参数可变系统的实验表明,多小波神
经网络的预测性能较单小波神经网络要好,而单小波神经网络的性能较BP网要好.因此,该方法不失为时间可变
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系统预测的一种好的推荐. 
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1   Introduction 

Time series is a sequence of observed data and usually ordered in time. Real-life time series can be taken from 
physical science, business, management, social and behavioral science, economics, etc. Time series prediction, 
which is based on the idea that the time series carry within them the potential for predicting their future behavior, is 
a very important problem in many applications. Analyzing observed data produced by a system can give both the 
good insight into a system and the knowledge about laws underlying the data. 

Numerous studies on time series prediction have been undertaken by a lot of researchers. Unfortunately, most 
of them are related to the construction of structure-invariable system whose parameter values do not change all the 
time[1−7]. In fact, many realistic systems are naturally structure-variable, which means that the parameter values of 
these systems are always changing with time. The stock system, the financial expenditure system for one country, 
the seismic system and the climatic system are such examples since the environments of these systems change 
rather rapidly before they settle down at some asymptotic states. In this case, the embedding theorems are invalid, 
which means that the parameter-varying systems reconstruction is more difficult than parameter-invariable systems 
prediction. Only few related results can be found in Ref.[8], and some theoretical problems still need to be 
investigated. 

Some recent works show that feed-forward neural network (NN), trained with backpropagation and a weight 
elimination algorithm, outperforms traditional nonlinear statistical approaches in time series prediction[1−5]. In spite 
of its numerous advantages, like robustness and ability to learn, neural network is hard to determine its structure and 
it often converges to local minimum. At the same time, wavelet analysis has been developed recently as a powerful 
analytical tool[9,10]. It has been widely applied to signal analysis and feature extraction due to some excellent 
properties, for example, in making local analysis. Recently, due to the similarity between wavelet decomposition 
and one-hidden-layer neural network, the idea of combining both wavelet and neural network has been proposed in 
various works. The resulting structure is called wavelet neural network (WNN). They show that the training and 
adaptation efficiency of the wavelet neural network is better than other neural networks[6−8]. Furthermore, using 
wavelet in the framework of neural network facilitates the theoretical analysis of its asymptotic properties such as 
universal approximation and consistency, and helps us to determine the structure of neural network. Meanwhile, 
multiwavelets as a generalization of wavelet appear to have better properties than traditional wavelet, which makes 
a new way of the theory and application study of wavelet theory. It is possible to construct a basis for multiwavelets 
with compact support, orthogonal, approximation order greater than 1 and symmetric properties, which are not all 
simultaneously possible for traditional wavelet basis[11]. And this greatly motivates us to constitute a new kind of 
wavelet neural networks, called as multiwavelets neural network(MWNN)[12−14], and try to use it for predicting time 
series from parameter-varying systems. The mean square error function of the network is convex respect to all 
training parameters, so the problem of poor convergence and undesired local minim are avoided remarkably. Hence 
one may expect that this wavelet network is a more powerful tool for predicting chaotic series compared to other 
prediction techniques. 

Principal Components Analysis (PCA)[15] is a canonical and widely used method for dimensionality reduction 
of multivariate data. Applications include the exploratory analysis and visualization of large data sets, as well as the 
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denoising and decorrelation of inputs for algorithms in statistical learning. PCA as a prevalent analysis tool has two 
advantages: the order of uncorrelated principal components is explicitly given in terms of their variances, and the 
underlying structure of series can be revealed in using the first few principal components. 

The main contribution of the present paper is the use of WNN/MWNN for short-term prediction on time series 
generated from the parameter-varying systems. And the corresponding prediction techniques are developed. We 
check the prediction performance of the proposed models by measuring the accuracy of the prediction results for 
available data sets. Time series generated by Ikeda map is chosen for the purposes of checking prediction ability. In 
fact, applying the WNN/MWNN for parameter-varying system reconstruction is a new attempt. Fortunately, for the 
selected prediction tasks, we get promising results by using these three networks. From the simulation results, WNN 
could lead better results than NN, MWNN appears to yield the best prediction performance and it should to be 
recommended for further prediction study. 

The rest of paper is organized as follows. In Section 2, after a brief introduction of parameter-varying systems, 
we discuss the short-term predictability for them. Section 3 provides an overview of wavelet analysis, and the 
detailed description of the wavelet/multiwavelets neural network architecture and prediction algorithm is also 
presented. Section 4 reports the computer simulations for time series prediction with parameter-varying systems. 
Finally, in Section 5, a conclusion is provided. 

2   Parameter-Varying Dynamical Systems 

In many realistic systems, the parameter values are always changing with time, we call this kind of systems as 
parameter-varying dynamical systems. In some such systems, we can clearly see the phenomenon of 
period-doubling bifurcations in time if the parameter values vary relatively slow. Such bifurcations are obviously 
different from the usual period-doubling ones. 

The following parameter-varying dynamical system is considered: 
 X(n+1)=g(X(n),µ(n)) (1) 
where g:Rm×Rp→Rm is a continuous smooth function, and µ(n) is a p-dimensional parameter vector of the system at 
time n with its components increasing monotonically with n. Suppose we can only obtain one-dimensional 
observations from this system, we record the x-component value of each iterations as xn. In this case, Takens’ 
theorem and its extensions are at least in principle invalid since the given system has no asymptotic sets. 
Reconstruction of parameter-varying systems will be more difficult because of the lack of the related theory. 

Remarkably, in the last two decades, there has been a lot of work trying to apply the chaotic dynamics to many 
natural systems. In principle, many of these natural systems such as biological, ecological and economical systems 
belong to parameter-varying systems. Moreover, it is found recently that every parameter-varying system can be 
transferred into a corresponding higher-dimensional parameter-invariable system by adding some new variables so 
that the nonlinear prediction algorithms, such as neural networks, wavelet, and chaos analysis, may work well for 
parameter-varying systems. This result encourages us to apply these prediction algorithms to reconstruct 
parameter-varying systems. 

Consider that there is a time series x1,x2,…,xn from a parameter-varying system, according to the analysis 
above, there exists a function F such that 
 xn≈F(xn−d,xn−(d−1),…,xn−1) (2) 
The problem of predictability is how to find a good estimate of F based on the past history of xn, on which various 
techniques of nonlinear deterministic prediction have been developed. In this paper, we will use the prediction 
algorithm based on the WNN/MWNN. 
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3   Method 

3.1   The wavelet/multiwavelets neural network model 

The multiresolution analysis (MRA) introduced by Mallat et al.[9,11] gives us a uniform framework to construct 
the wavelet/multiwavelets basis. Let φ:=(φ1,φ2,…,φr)T, φ1,φ2,…,φr∈L2(R), r≥1, satisfy 
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for some r×r matrices Pk, such that the collection of integer translations {φl(⋅−k):1≤l≤r,k∈Z} constitutes a Riesz 
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From the theory of MRA, when M is sufficiently large, one has L2(Rd)≈VM, that is, for ∀f∈L2(Rd), ∀ε>0, 
∃fM∈VM, such as: 

  (4) )()(,),...,(
1

,
1

,
)(

,,2,1

1 p

d

p
kMp

d

p
kM

d
dp

Zk
dM xyyyff p

p

p

p
d p

∏∏∑ ∑
==Γ∈

=
∈

><= σσ

σ
φφ

L

when M is larger enough, there is ||fM−f||≤ε, where ||⋅|| indicates L2(Rd) norm,〈⋅,⋅〉 is the inner product. 
In many practical problems, since either the (multi)-scaling functions or the functions have finite support, the 

sum about kp in Eq.(4) contains only a finite terms JM, so we can rewrite the approximation of any f∈L2(Rd) as: 
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The above equation shows that a function can be approximated by an orthogonal function sets. Since Eq.(5) has a 
linear-in-parameter structure which can be realized by a neural network, the coefficients  can be regarded as 
the weights of the neural networks, called wavelet neural network (WNN) for r=1, and multiwavelets neural 
network (MWNN) for r≥2. The proposed WNN/MWNN are made of three layers: the input layer, the hidden layer 
and the output layer. In this paper, we just discuss separable 
wavelet/multiwavelets in the case of L

)(
,

ˆ d
KNCσ

2(Rd)to deal with the high 
dimensional problem. A schematic diagram of the networks is 
presented in Fig.1. The following lemma is valuable to calculate the 
size of the hidden layer. 

Fig.1  Wavelets/Multiwavelets neural 
network structure (d=2) 

Lemma 1[13]. Suppose the support of Φ(x1,x2,…,xd) is [0,u]d, and 
the support of the approximated function F is [0,1]d, then the number of 
nodes in the hidden layer must be rd∗(2M+u−1)d, and the set of the 
threshold value should be JM={−u+1,…,2M−1}. 

3.2   Prediction algorithm 

There are many training algorithms for our network. In order to compare the prediction performance with the 
neural network, the gradient-based techniques for updating the parameters are used for the given network. Because 
wavelet networks are linear about the training parameters (connecting weights from hidden layer to output layer), 
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the mean square error’s function of the network is convex. Therefore gradient-based techniques can avoid the 
problem of poor convergence and undesired local minimum remarkably. 

The basic steps of our algorithm for the reconstruction of parameter-varying systems by WNN/MWNN are as 
follows: 

Step 1. Data pre-processing: The inputs to a system can be anything from external forcing to internal state 
variables. For the complex time series, the dimension of input information is often too high, and thus an extremely 
large number of hidden neurons and training examples should be used to train the networks. A preferable strategy is 
to attempt to reduce the dimension of the input data, and techniques like principal components are often applied to 
achieve a more compact, more stable model. 
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generated by the parameter-varying system. The new “constructed” time series by using PCA on initial inputs are 
then used as the inputs of the networks. 

Step 2. Select a small integer for M (for example M=0), calculate the size of the hidden layer by Lemma 1, the 
threshold value of each hidden node and the connection weights between the input layer and hidden layer are 
decided. 
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where oi and yi are the actual and desired outputs when the input vector is xi. By combining gradient descent 
techniques and delta rule to adjust the connection weights, we have: 
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where parameters λ,α∈(0,1), λ is called the learning rate, and α is the momentum. 
Step 6. Repeat steps 4~5 until the error EM,N is less than a given tolerant value. 

4   Simulation Results 

In order to investigate the capability of the proposed networks for forecasting the future state of 
parameter-varying system, the experiments have been performed on the same chaotic time series using three 
different network models, which are NN, WNN and MWNN with the same network structure. A time series 
generated by the Ikeda map with one parameter as a variable is chosen. It is described by the following equations[8]: 
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Iterate Eq.(7) with initial conditions x0=0.87,y0=−0.40, and µ0=−0.34 until µn increases to 0.7 (10,400 
iterations). We record the x-component value of each iteration and show the time series xn,n=0,1,2,…,10,400 in 
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Fig.2. 
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Fig.2  Time series generated by Ikeda map 
 
The time series is divided into three subsets referred to: the chaotic subset, the training and test subsets. The 

first 400 points are abandoned for their irregularity. The training set consists of 400 data points x400,x401,…,x799, we 
use the training set to fit F by using WNN/WNN and make one-step prediction on the next 200 values. 

In our experiments, we reduce the input dimension to 2 by PCA. For the training set, we can calculate its 
covariance matrix R, the eigenvalues and the corresponding eigenvectors. The eigenvalues take the following 
values: λ1=0.1002,λ2=0.0053,λ3=0.0018. Obviously, in this case, the first two eigenvectors contains almost all the 
energy. So the data could be well approximated with a two-dimensional representation. 

We choose Daubechies-3 scale function in Ref.[10] as the activation function of the hidden layer in WNN, 

which is descried as ∑
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H2=0.4598775021184914, H3=−0.1350110200102546, H4=−0.0854412738820267, H5=0.0352262918857095. 
The activation function of the hidden layer in MWNN is assumed to be orthonormal multi-scaling functions[11] 

supported on [0,2] describes in Fig.3: 
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Using Lemma 1, we can get that the numbers of the hidden neurons in WNN and MWNN are 25,16 
respectively. For the convenience of comparison, we limit the support of the activation function of WNN on 
[0,4](Fig.4), therefore the number of the hidden neurons in WNN is 16, the same with the MWNN. So the three 
kinds of networks with the same structure 2-16-1 (i.e., the input vector is composed of 2 components, the hidden 
layer is composed of 16 neurons, and the output layer is composed of 1 neuron) can be obtained. Although the same 
network structure, the numbers of the free parameters are different (there are only 17 parameters in the 
multiwavelets neural network and wavelet neural network while neural network has 65 parameters). 

In the experiments, in order to compare the capability of predicting the future state of parameter-varying 
systems, some error functions are defined as follows: 
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where m=400, l=800, k=1000, yi is the desired output and  denotes the actual output. iŷ
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Fig.3  Multi-scaling functions               Fig.4  Daubechies scale function 

Experiments are conducted on Ikeda time series to testify the prediction performance of the networks. To 
ensure the relevance of the comparisons, two types of training conditions of networks are recommended in our 
experiments to give a proper value (namely 20000) for limiting the number of training epochs and impose a desired 
value (namely 0.0001) as the Mse goal. Interest will first focus on the main features of the training procedures, and, 
afterwards, emphasis is placed on the prediction quality of the identified models. For a given training times, the 
achieved Mse is regarded as the training results listed in the first column of Table 1. The first column of Table 2 
records the training times with the given tolerant Mse. The prediction quality of the trained networks is evaluated in 
terms of prediction errors for test subsets, and the mean and minimum errors (Error1, Error 2, Error3, Error 4) over 
50 simulations with two different stop training criterions are shown in Table 1 and Table 2. 

Table 1  Quality of networks depending on the training epochs 20000 

 Network Mse Error 1 Error 2 Error 3 Error 4 
MWNN 7.625e−5 5.002e−4 6.755e−3 1.829e−2 1.679e−2 
WNN 8.865e−5 6.641e−4 9.583e−3 1.917e−2 1.523e−2 Mean error 
NN 9.099e−5 8.357e−4 1.111e−2 2.515e−2 2.212e−2 

MWNN 2.625e−5 1.981e−4 2.583e−3 8.906e−3 6.823e−3 
WNN 5.233e−5 2.322e−4 3.064e−3 9.007e−3 7.617e−3 Minimum error
NN 2.737e−5 2.211e−4 2.660e−3 9.134e−3 9.731e−3 

Table 2  Quality of networks depending on the tolerant Mse 0.0001 

 Network Training times Error 1 Error 2 Error 3 Error 4 
MWNN 1.302e+4 5.995e−4 7.820e−3 2.230e−2 2.116e−2 
WNN 1.395e+4 6.611e−4 9.593e−3 1.802e−2 1.468e−2 Mean error 
NN 1.905+4 9.233e−4 1.205e−2 2.646e−2 2.399e−2 

MWNN 1898 2.453e−4 2.263e−3 9.956e−3 7.794e−3 
WNN 795 2.457e−4 3.282e−3 8.628e−3 6.839e−3 Minimum error
NN 452 3.052e−4 3.545e−3 1.024e−2 9.290e−3 

According to the definitions, we think that the measurements of average error Error 1 and Error 2 seem to be 
the more important indexes to check the network prediction performance than Error 3 and Error 4. From Table 1 and 
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Table 2, we conclude that these three kinds of networks all can be used to reconstruct the parameter-varying 
systems, and the performance of WNN are better than NN, while MWNN appear significantly better than WNN 
although the max relative error (Error 3) and the max absolute error (Error 4) between predicted and actual values 
trained by MWNN are slightly bigger than those obtained from WNN. 

5   Conclusions 

In this work, we have presented two prediction models that adopt the ideas from the wavelet analysis and 
neural networks, then we use them for forecasting of time series generated from the parameter-varying system. The 
algorithm for predicting the time series has been described in detail. The performance of the proposed networks is 
tested in predicting the time series generated by the Ikeda map with one parameter as a variable. The experimental 
results show that the MWNN has better capabilities than the WNN in forecasting the parameter-varying system. And 
they also show that the WNN performs better than NN on Ikeda time series. In this paper, the dimensionality 
reduction of the input data by PCA accounts for obtaining more precise and reasonable numerical results, and the 
size of the hidden layer is reduced.  

As pointed out above, the application of the MWNN in conjunction with PCA gives satisfactory results for 
predicting time series from parameter-varying systems, and this approach would probably be preferable in practical 
situations. 
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