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Abstract:  Dynamic analysis of the coupled logistic map redounds to know and predict the characteristics of 
high-dimension complex nonlinear system. Using the method combining calculation and experiment, the following 
conclusions are shown: (1) The boundary equation of the first bifurcation of the coupled logistic map in the 
parameter space is given out. (2) Chaotic patterns of the coupled logistic map may emerge out of double-periodic 
bifurcation and Hopf bifurcation, respectively. (3) The boundary between periodic and non-periodic regions in the 
attraction basin of the coupled logistic map is fractal, which indicates the impossibility to predict the moving result 
of the points in phase plane. (4) The structures of the Mandelbrot-Julia sets are determined by the control 
parameters, and their boundaries have the fractal characteristic. 
Key words:  coupled logistic map; bifurcation; chaos; Mandelbrot-Julia set; fractal 

摘  要: 对二维 logistic 映射的动力学研究有助于认识和预测更复杂的高维非线性系统的性态.利用解析计算
和实验分析相结合的方法揭示出:(1) 参数空间中二维 logistic映射发生第一次分岔的边界方程;(2) 二维 logistic
映射可按倍周期分岔和 Hopf 分岔走向混沌;(3) 二维 logistic 映射的吸引盆中周期和非周期区域之间的边界是
分形的,这意味着无法预测相平面上点运动的归宿;(4) Mandelbrot-Julia 集的结构由控制参数决定,且它们的边
界是分形的. 
关键词: 二维 logistic映射;分岔;混沌;Mandelbrot-Julia集;分形 
中图法分类号: TP301   文献标识码: A 

1   Introduction 

May, the mathematical ecologist, has suggested in one of his influential article published in 1976 by “Nature”, 
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that the non-heterogamous insect population model in ecology can be explained in terms of nonlinear difference 
equation[1] 
 )1(1 nnn xxx −=+ µ  (1) 

According to the study on the logistic map, people have found that it come through double-periodic bifurcation 
into the chaos[2]. Based on this foundation, people have studied the chaos of the two-dimension logistic map and its 
application in ecology, etc[3]. For example, Satoh and Aihara have studied self-similarity of the attractor for a 
two-dimension predator-prey system[4]; According to chaotic dynamics of the coupled logistic map, Hastings has 
investigated the fluctuation of insect and population[5], and Zengru and Sanglier have analyzed the interaction of 
demand and supply in economics[6]. What kinds of dynamic characteristics does the coupled logistic map with a 
simple coupling term have? 
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Therefore, this paper gives a careful study on the dynamic behaviors of Eq.(2). 

2   Bifurcation Theory of the Coupled Logistic Map 

Eq.(2) can be expressed as )(1 nn ZfZ
rr

=+ . Assume ),( *** yxZ =
r

 is the fixed point of Eq.(2), then =(x*Z
r

*,y*) 

is the solution to the equations below: 
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From Eq.(3), we can get the fixed points as  and ()0,0()( 1* =Z )2,2() 2* =Z
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The stability of these fixed points is relative to the maximum eigenvalue (its absolute value is expressed as 

|K|max) of Jacobi matrix on the fixed points. If  is expressed as the Jacobi matrix of the map f on the fixed )( *Zf
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If |K|max<1, then the fixed points are stable; If |K|max>1, then the fixed points are unstable; If |K|max=1, the first 
bifurcation of Eq. (2) will occur[7]. We calculate the solutions of the characteristic polynomial of  and get )( *Zf

r
′

two eigenvalues as follows: 
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where L=2+2h−2h(x*+y*),M=2h(y*−x*),N=h2, then 
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Eq.(5) shows that |K|max is the function of parameter h. According to condition |K|max=1, using Eq.(5), we can 
deduce the boundary of Eq.(2) in parameter space when the first bifurcation occurs 

  (6) 0)21(1)21)(121( *
2
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where “−” corresponds to |K|max=K+, “+” corresponds to |K|max=K− in “ ”. m

Substituting  into Eq.(4), we can deduce that this fixed point is unstable. Substituting 

 into Eq.(6), we can deduce that if h=0, then the first bifurcation of Eq.(2) will occur when h<1/3; if 
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h=1 or h=1/2, then the first bifurcation of Eq.(2) will occur when h>1/3. 

3   Experiment and Results 

The dynamic behavior of Eq.(2) is determined by the control parameter h. In order to make full study of the 
behavior of Eq.(2) in the parameter space, the authors use a few methods such as phase graph, bifurcation graph, 
power spectra, Lyapunov exponent, correlation dimension, and attraction basin to study the evolution of the 
systemic behavior with the change of parameter along the two paths in the parameter space. 

3.1   Bifurcation process 

3.1.1   Analysis of phase graph and bifurcation graph 
The two paths in the parameter space are h∈[−1.35,−0.98] and h∈[0.497,0.686] respectively. Choosing the 

initial point (xn,yn)=(0.4,0.5), the authors construct the attractor and bifurcation graph of Eq.(2). Fig.1 and Fig.2 
show a group of representative results. 

Let us observe the evolution of the systemic behavior with the change of parameter h along the first path: 
When −0.9995≤h≤−0.98, the system converges to a fixed point in the phase plane (shown as Fig.2(a)); Decreasing 
h, when −1.22445≤h≤−0.99951, −1.27195≤h≤−1.22446, −1.28216≤h≤−1.27196, −1.28436≤h≤−1.28217, …, etc, the 
system takes place double-periodic bifurcation and appears in turn 2 points, 4 points, 8 points and so on in the phase 
plane (shown as Fig.2(a)); Continuing decreasing h, when −1.31327≤h≤−1.28498 chaos appears; Decreasing h, 
when −1.31518≤h≤−1.31328, periodic-6 points emerge in phase plane (Fig.2(b)); Continuing decreasing h again, 
when −1.31608≤h≤−1.31519, −1.3163≤h≤−1.31609, −1.31634≤h≤−1.31631, …, etc, the system takes place 
double-periodic bifurcation again and appears in turn 12 points, 24 points, 48 points and so on in the phase plane 
(Fig.2(b)); Decreasing h, when −1.35≤h≤−1.31637 chaos emerges again (Fig.2(b)). 

The evolution of systematic behavior when the control parameter h varies along the second path is as follows: 
When 0.497≤h≤0.49973, the system tends to a stable fixed point in the phase plane (Fig.2(c)); Increasing h, when 
0.49974≤h≤0.50012, two fixed points emerge in the phase plane (Fig.2(c)); When 0.50013≤h≤0.50022, a limit loop 
appears in the phase plane (Fig.2(c)); When 0.50023≤h≤0.5997, two stable fixed points emerge in the phase plane 
again (Fig.1(a)); When 0.5998≤h≤0.65286, the two fixed points are unstable and the new stability state is two limit 
loops around the former fixed points (Fig.1(b)), moreover, these two limit loops will increasedly deform with h 
increasing (Fig.1(c)). Fig.1(b) and Fig.1(c) show that the two stable limit loops are closed, and their neighboring 
orbits converge on them. Continuing increasing h, when 0.65287≤h≤0.686, further bifurcation will occur and 
strange attractors emerge in phase plane (Fig.1(d)~Fig.1(f), Fig.2(d)). 

According to the attractor and its partial magnification (from Fig.1(f) to Fig.1(h)), we can see that strange 
attractors refer to a sort of movement with unrepeated orbit and complicated properties, which is restricted in 
limited region all along. The delicate structure of strange attractor exists by all scales, and the strange attractors 
wouldn’t form entity in the phase space even in the infinite time limit. 

Property 1. The attractor in Fig.1 is symmetry about beeline y=x. 

Proof.  Using the inductive method of mathematics. Let , , then Eq.(2) may be 
denoted as z
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Namely,  (k=1,2,…,N; N refers to the times of iteration), it demonstrates that the attractors 
constructed by Fq.(2) are symmetry about beeline y=x. 
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(a) h=0.59803                (b) h=0.60167                 (c) h=0.64326               (d) h=0.65652 

    
(e) h=0.68011                 (f) h=0.6845           (g) Partial enlargement of Fig.1(f)   (h) Partial enlargement of Fig.1(g) 

                     
Fig.1  Attractors of Eq.(2) 
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mentioned above. It indicates that Eq.(2) will tend to chaos through double-periodic bifurcation or Hopf bifurcation, 
respectively[8]. 

In 1978, using the method of renormalization group, Feigenbaum found that the interval ratio limit δ=4.66920 
in convergence sequence of bifurcation value µn (n=1,2,…) is a universal constant when Eq.(2) turns into chaos 
through double-periodic bifurcation. This constant is known as Feigenbaum constant that reflect the regularity of 
the way by which the system turns into chaos through double-periodic bifurcation[2]. Using the method combining 
calculation and experiment, the authors get the interval ratio limit in the convergence sequence of bifurcation value 
hn (n=1,2,…) and hm (m=1,2,…) which twice the double-periodic bifurcation emerge successively in the first way to 
chaos we have discussed above 

 ...48391.4lim
1

1 =
−

−
=′

+

−

∞→
nn

nn
n hh

hhδ  (7) 

 ...37846.4lim
1

1 =
−

−
=′′

+

−

∞→
mm

mm
n hh

hhδ  (8) 

From Eq.(7) and Eq.(8), it can be found that δ′ and δ ′′  are almost equal to Feigenbaum constant δ. This 
indicates that the logistic map and the coupled logistic map have some common rules: On the process of turning to 
chaos through a series of double-periodic bifurcations they all represent self-similarity and scale transform 
invariability in the parameter space and the phase space. This evolvement process is a generic characteristic in a 
nonlinear system. 
3.1.2   Power spectra analysis 

According to Welch’s method of average periodic chart[9], the authors calculate the power spectra of Eq.(2). 
The data used in computing are the sequence values of xn (n=1,2,3,…). The parameters used in the analysis are: 
sampling frequency 1Hz; FFT length M:1024; window type: rectangular window; window length L:1024; maximum 
number of analysis samples N:10000; segment number K:194. The authors calculate the power spectra 
corresponding to the attractor in Fig.1 (shown as Fig.3). 
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Fig.3  Power spectra of attractors of Eq.(2) 
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3.1.3   The computation of the Lyapunov exponent and the fractal dimension 

According to the method of calculating Lyapunov exponents from difference equation[3], the authors calculate 

the variation curves of Lyapunov exponent λ1 and λ2 of Eq.(2) when the control parameter varies along the two 

paths mentioned above (Fig.4(a) and Fig.4(c)). In addition, when the two Lyapunov exponents of the coupled 

logistic map are (λ1,λ2)=(+,−) the system is described by strange attractors, according to Kaplan-Yorke 

assumption[10]: d=1−λ1/λ2, we can get the fractal dimension d; when the Lyapunov exponents are (λ1,λ2)=(−,−), the 

system tends to be a fixed point with fractal dimension d=0; when Lyapunov exponents are (λ1,λ2)=( 0,−), the 

system shows a limit loop with fractal dimension d=1[11,12]. Thus according to the change curve of Lyapunov 

exponent λ1 and λ2, the authors calculate its fractal dimension d of attractor of Eq.(2) when control parameter varies 

with the two paths mentioned above (Fig.4(b) and Fig.4(d)). 

λ

               

d

  
h                                                        h 

(a) Lyapunov exponent curve when parameter varies                 (b) Fractal dimension curve when parameter 
along the first path: 1−λ1, 2−λ2                                varies along the first path 

λ 

              

d

  
h                                                        h 

(c) Lyapunov exponent curve when parameter varies                 (d) Fractal dimension curve when parameter 
 along the second path: 1−λ1, 2−λ2                               varies along the second path 

Fig.4  Lyapunov exponent and fractal dimension curves of Eq.(2) 

3.1.4   Attraction basin 
The following two methods can be used to construct the attraction basin of Eq.(2): (1) Enacting the watch 

window W, the maximum iteration times N (here N=2000), and the value h exhibiting periodic-p movement (p is 
positive integer) of Eq.(2) in the phase space. (2) ∀zn=(xn,yn)∈W,according to Eq.(2), calculate zk. (3) Method I: if zk 
(k≤N) falls into periodic-p orbit, then put point z0 black, otherwise, put it white. Method II: if zk (k≤N and k is odd) 
falls in periodic-p orbit, then put point z0 with black color, otherwise, put it with white color. (4) The course (2) and 
(3) are repeated, until all points in the watch window W are exhausted. Then we can get the periodic-p orbit 
attraction basin of Eq.(2).  

Figure 5 shows the attraction basin of periodic-p orbit of Eq.(2). Figure 5(a) is generated with method I, and 
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Fig.5(b) and Fig.5(c) are generated with method II. The black and white region in Fig.5 represent the movement 
region of different characteristics respectively. For the initial points in black regions we can definitely predict that 
these points will finally evolve to periodic-p orbit with time changing. From partial enlargement of Fig.5(d), we can 
see that the boundary between black and white regions is fractal, i.e., there exists delicate structure to arbitrary 
minute scale. Thus we can conclude that the initial points of different characteristics in attraction basin are closely 
interwoven. Therefore, the final settling place of the movement is unpredictable, i.e., though Eq.(2) is described by 
periodic attractors in the phase space, the movement of points in the phase space is very complicated. 

Theorem 1. Let , , then Eq.(2) may be denoted as zi
nnn yxz += i

nnn xyz +=*
n+1=f(zn). If the attraction basin is 

generated with Eq.(2), then we can get 

)()]([ **
n

k
n

k zfzf = (k=1,2,…,N). 

Using the inductive method of mathematics, we can prove this theorem easily. Theorem 1 indicates that the 

attractor basin generated with Fq.(2) is symmetry about beeline y=x. 

           

y yy y

x                          x                            x                            x 
(a) Periodic-12 attraction basin   (b) Periodic-4 attraction basin  (c) Periodic-8 attraction basin      (d) Partial enlargement of  

for h=0.65136              for h=−1.25296               for h=−1.27651                   Fig.5(b) 
Fig.5  Attraction basin of periodic orbit of Eq.(2) 

3.2   Self-Similarity 

Based on the “complex dynamic system theory” created by Julia and Faton, famous mathematician Mandelbrot 
not only construct the Julia set in the dynamical Z-plane and Mandelbrot set in parameter C-plane but also study 
them in 1970s[13]. Now people have done some deep study about Mandelbrot-Julia set and found out that there hides 
intricate regular structure in them, thus the fractal theory is enriched[14−16]. Based on the prediction made by Rössler 
in 1986 that the dynamic behavior of super-chaotic system in the phase space manifests in self-similarity[17], and the 
discovery given by Kaneko in 1983 that super-chaos phenomenon exists in the coupled logistic map[18], the fractal 
characteristics of self-similarity is discussed in this paper. 
3.2.1   Mandelbrot-Julia sets in two-dimension space 

The method to construct Mandelbrot-Julia set in two-dimension space is as follows: (1) Transform Eq.(2) into 
the following equation 

  (9) 






++−+=
++−+=

+

+

)(
)(

2
1

2
1

ykkkykk

xkkkxkk

cxyyhyy
cyxxhxx

where the former one-dimension parameter h is replaced by two-dimension control parameters (hx,hy),cx and cy are 
two real parameters; (2) Enacting the watch window W (W⊂C or Z), the escape-radius R and the escape-time limit 
N; (3) For Mandelbrot set, ∃c0∈W and W⊂C, let z0=(x0,y0)=(0,0) and choose the parameters hx and hy, then calculate 
zk; For Julia set, ∃z0∈W and W⊂Z, choose the parameters cx, cy, hx and hy, then calculate zk; (4) If after oddtimes of 

iteration, Ryxz kkk >+= 22  is satisfied, then put point z0 with black color; otherwise, put point z0 with white 
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color; (5) Steps (3) and (4) are repeated until all points in the watch window W are exhausted. Then we can get the 
Mandelbrot-Julia sets of Eq.(2) in two-dimension space (Fig.6). 

Figure 6 shows that: (1) All kinds of the white strip regions outside of the black attracted region in Fig.6 are 
surrounded circuitously. Owing to the limited degree of precision of computer, the boundary of finite attracted 
region doesn’t exhibit fractal property, however, when increasing the magnifying multiple, the delicate structure of 
the boundary curve of infinite attracted region exists by all scales, and it exhibits fractal property (Fig.6(b) and 
Fig.6(d)); (2) Fig.6 is symmetry about beeline y=x, and the proof of its symmetry is as follows: 
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dimensional space (shown as Fig.7); the black represents the stable region and the white represents the escape 
region. 

Figure 7 shows that: (1) The black stable region is embedded in the white escape region; (2) The structure of 
the Julia set varies with different control parameters. Figure 7(a) to Fig.7(c) are symmetry about beeline y=x while 
Fig.7(d) is symmetry about the axis x; (3) Owing to the limited degree of precision of computer, the boundary of 
stable region doesn’t exhibit fractal property, however, when increasing the magnifying multiple, the boundary of 
the stable region is smooth, and it exhibits fractal property (Fig.7(b)). The symmetry is proved as follows: 
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Fig.7  Two-Dimension Julia set of Eq.(2) in four-dimension space 
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(i) If let ηn=im(xn)+im(yn)i, , then (k=1,2,…,N) when re(xiximyim nnn )()(* +=η )()]([ **
n

k
n

k ff ηη = 0)=re(y0)=a 

(a is real constant). 

(ii) If let εn=re(xn)+re(yn)i, = re(y*
nε n)+re(xn)i, then [ (k=1,2,…,N) when im(x)()]( **

n
k

n
k ff εε = 0)=im(y0)=b 

(b is real constant). 

(iii) If let δn=re(xn)+im(yn)i, nδ =re(xn)−im(yn)i, then )()( n
k

n
k ff δδ = (k=1,2,…,N) when im(x0)=im(y0), 

re(y0)=a (a is real constant), or when im(x0)=a, re(y0)=b (a, b are real constants). 
On the basis of the conclusions (i) and (ii) drawn from Theorem 3, the Julia sets from Fig.7(a) to Fig.7(c) are 

symmetry about beeline y=x; and from conclusion (iii), the Julia set in Fig.7(d) is symmetry about the axis x. 

4   Discussion and Conclusion 

(1) From Fig.1 and Fig.2, we can see that when the control parameter varies, Eq.(2) comes through 
double-periodic bifurcation and Hopf bifurcation into chaos. The interval ratio limit of the bifurcation value 
sequence when the coupled logistic map takes place double-periodic bifurcation is almost the same as Feigenbaum 
constant. This reflects the regularity of the way by which the system turns into chaos through double-periodic 
bifurcation[19]. In order to testify this conclusion, further researches have been conducted in this field. For instance, 
Broucke made use of the one-dimensional map to describe the equivalent form of chua’s circuit, and discovered that 
the map’s Feigenbaum constant is 4.6933[20]. Chua turned the equation which depicts the chua’s circuit to 
three-dimensional scalar quantity differential equation, and traced the double-periodic process with the equation’s 
result. He presented that the bifurcation series’ interval rate accord with the Feigenbaum constant[21]. Wikan and his 
partners pointed out that Feigenbaum constant also exists in the population model[22]. Using the series arithmetic, 
Dooren found that there are at least six phases of double-periodic bifurcation process in the way of suppressed 
Duffing system to chaos, and every phase bifurcation process can be defined by the constant 4.6692[23]. Cooper 
researched the double-periodic bifurcation process in Carotid-Kundalini map and gravity data, and calculated the 
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result consistent with the Feigenbaum constant[24,25]. The above studies indicate that the general feature of 
double-periodic bifurcation to chaos can apply to all of nonlinear map in addition to logistic map. 

(2) From Fig.3, we can see that there are δ function style sharp spikes in the fundamental frequency and its 
higher harmonic waves in the power spectra from Fig.3(a) to Fig.3(c). From Fig.4 we can find d=1 or 0, and λ1 is 
negative in the condition mentioned above. This indicates that the movement of Eq.(2) is periodic as the fixed 
points and limit loop shown in from Fig.1(a) to Fig.1(c). From Fig.3(d) to Fig.3(f), the power spectra do not have 
sole frequency spikes only in the fundamental frequency and its higher harmonic waves but abundance frequency 
components and noise background for broad band. From Fig.4, we can see that the fractal dimension d of attractors 
of Eq.(2) shown as from Fig.1(d) to Fig.1(f) are all fractional and their maximum Lyapunov exponents λ1 are all 
positive real. This indicates that Eq.(2) is chaotic, that is to say, the attractors given from Fig.1(d) to Fig.1(f) are 
strange attractors. 

(3) The study on attraction basin of periodic orbits of the coupled logistic map indicates that the iterative result 
of the coupled logistic map relies on the initial value, i.e., the iteration process started from different division on 
(x,y) plane converges to different periodic or non-periodic orbit. In this sense, it is much different from the one- 
dimensional map where there is no more than one stable period and whatever the initial value is, the same result 
will be achieved. Moreover, the boundary between periodic and non-periodic region in attraction basin is fractal, 
i.e., there exists delicate structure to arbitrary minute scale. 

The study on the Mandelbrot-Julia set of the coupled logistic map shows that the Mandelbrot-Julia set will be 
different under variable control parameters and the boundary of stable region is smooth, and it exhibits the fractal 
property. 
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