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Abstract: Representing a curve contained in a surface is very important in dealing with path generation in
computer numerical control (CNC) machining and the trimming issues that frequently occur in the field of
CAD/CAM. This paper develops methods for tangent direction continuous (G') and both tangent direction and
curvature continuous (G?) interpolation of a range of points on surface with specified tangent and either a curvature
vector or a geodesic curvature at every point. As a special case of the interpolation, the blending problems of curves
on surface are also discussed. The basic idea is as follows: with the help of the related results of differential
geometry, the problem of interpolating curve on a parametric surface is converted to a similar one on its parametric
plane. The methods can express the G' and G? interpolation curve of an arbitrary sequence of points on a parametric
surface in a 2D implicit form, which transforms the geometric problem of surface intersection, usually a
troublesome issue, into the algebraic problem of computing an implicit curve in displaying such an interpolation
curve. Experimental results show the presented methods are feasible and applicable to CAD/CAM and Computer
Graphics.
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In the fields of CAD/CAM, computer graphics, computer animation, robotics, CNC machining and so on,
numerous problems involve the representation of a space or a planar curve. There is an extensive range of literatures
touching upon the problems. However, so far, only several efforts have been made towards developing more
effective methods for representation of surface curves (curves contained in the specified surfaces). Pobegailo
proposed an approach for G' interpolation and blending on a sphere!'l. Dietz et al. solved G° interpolation problem
on quadrics for the prescribed pairs (Py,t;),...,(Pn,t;) of points and parameters with the help of rational Bézier curves
12 Hartmann developed a method for curvature-continuous (G?) interpolation of an arbitrary sequence of points on
a surface (implicit or parametric) with the specified tangent and a geodesic curvature at every point ), which can be
directly employed in G? blending of curves on surfaces. Other related researches focus on G' and C' interpolation
presented in Refs.[4~5] respectively. Apparently, the method in Ref.[5] is good for display of the resulting
interpolation curve. However the resulting interpolation curve is a composed curve that might have too high degree.
In addition, direct approximation such as that with piecewise 4-point Bézier cubic curves or linear curves was also
applied to the representation of surface curves in practical applications®”). In fact, almost all trim-related literatures
introduce approximate methods. The aim of this paper is to develop methods for G' and G? interpolation of an
arbitrary sequence of points on surfaces with a prescribed tangent and curvature at any points. With the help of
relevant results in differential geometry, we convert the problems of space G' and G? interpolation on surfaces into
the similar ones in parametric plane. Other contributions in this paper include that we obtain the corresponding
curve in parametric plane of a space G' and G? interpolation curve on a regular surface and discuss the blending
issues of surface curves (implicit or parametric) such that the blending curve segment can be described in an
implicit form.

The rest of the paper is organized in the following manner. Section 1 introduces the necessary mathematical
bases that are involved in the presented methods for the representation of surface curves, while problem statements
are given in Section 2. Interpolation and blending issues are discussed in Section 3, where two kinds of methods to
represent surface curve are developed in Sections 3.1 and 3.2 respectively, and the blending method is developed in
Subsection 3.3. Practical examples and comparisons are given in Section 4. Finally, Section 5 finishes the paper

with conclusions.

1 Mathematical Preliminary

Suppose r(u,v)=(x(u,v),y(u,v),z(u,v))", u,ve[0,1] is a C" regular surface!®). Furthermore taking the equation of a
C"™ curve in (U,v) plane as u=u(t), v=v(t), te[a,b] and substituting them into the above surface equation, we get a

1]

space C™nN ™ cyrve:

r(t) = (XU, (D), YUD,VD),ZUM,V(D) = (XD, Y (1), 27 (1), telab]
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which is contained in the surface and called the surface curve. Obviously the curve u=u(t),v=v(t) is the original
image curve of the curve r(t) under the mapping r: [0,1]x[0,1]—>R">.
Now let us consider the relations between tangent vectors, between their second derived vectors, and between

their curvatures of the space curve r(t) and its original curve in parametric plane respectively. Write the original

image curve as a(t) = (u(t),v(t))" . From the derivation formula of composite function, i.e., chain rule, it follows

that:
ox/ou  ox/ov
, dr , , u’ du/dt
r'=—=ru+rV=(, r,) =|oy/ou oy/ov s €8
dt v’ dv/dt
oz/ou oz/ov
" dzr 2 "t 2 ” 2
r :dt—zzruu(u) + 20, UV 41, (V) 4R UT RV
v v ) \v v
d*x/eu*  8*x/ousv o*x/eudv  8°x/ov?
3 2 du/dt ) ) , [(du/dt) | du/dt
=||0"y/ou” 0°y/ouov o°y/ouov 0°y/ov +
3 ) 5 dv/di 5 5 , \dv/dt )|\ dv/dt
o“z/ou” 0°z/ouov o0“z/ouov 0°z/ov
ox/ou ox/ov), s
du/dt
oy/ou oy/ov S/at | 2)

oz/ou oz/ov
Assume k and Ky denote the curvature vector and geodesic curvature of curve r(t) respectively, and K, is the
curvature of its original image curve a(t) at the corresponding point. From differential geometry of curve, we
have
Fixk  r'xr” ((r, 1)) < (7, 1y)a (1, 1y )a)a)+r, xr, (VU —u"V')
et |, r)a' |
_ ((r, 1)@ (((ry, 1) (Fy, 1) Ya)+r, xr K, |a' |

|(ry v’ |’

3

Obviously, it is difficult for us to get an explicit expression satisfied by the curvature |k |andk,of the surface
curve. However, let’s turn to Kq for help. Suppose N is the unit normal vector of surface at a specified point, then

from (3), we get

(@ R)E) (6 B (1, 1)V TNK, |1, %1, |0 [
- |, 1)

k

9

“4)

Then from (3) and noting the fact r' L k, the following result can easily be got:

Proposition 1. At a given point with a specified tangent direction, the curvature vector of a surface curve on a
regular surface and the curvature of its original image curve determine each other uniquely.

From (4), it follows that:

Proposition 2. At a given point with a specified tangent direct, the geodesic curvature of a surface curve on a
regular surface and the curvature of its original image curve determine each other uniquely,

By Propositions 1 and 2, we further conclude:

Proposition 3. At the corresponding point, a surface curve on a regular surface and its original image curve

have the same continuity such as that of position, tangent vector and curvature.
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Proposition 4. A surface curve on a regular surface is G' continuous and curvature—continuous (vector), if and
only if its original image curve is G' continuous and curvature—continuous at the corresponding point, and the
similar conclusions hold for geodesic curvature.

Now let us consider the surface. In fact, it is defined by a mapping #: [0,1]x[0,1]>R>. Since we assume the
surface is a regular surface, the mapping is an one-to-one mapping and the tangent mapping induced by it is an
isomorphic mapping between tangent spaces of the plane domain and that of the surface at the respective
corresponding points. Using T,(r(t,)) and T,(a(t,)) to denote the tangent spaces of surface at the point r(t,)and
corresponding plane domain at the point a(t,) respectively, then the tangent mapping dr:T,(a(ty)) = T,(r(t,)) is
a linear one-to-one mapping (isomorphic). By differential geometry!™, this mapping can be expressed in the

following matrix form:

OXx/ou oOx/ov
dr(X)=|oy/ou oy/ov (X =(r, r)X 5)
oz/ou oz/ov

where the column vector X eT,(a(t,)) . For a regular surface, the transform matrix of (5) satisfies
rank(r, r,)=2.So from (1) and (2), we get the following conclusion:

Proposition 5. At corresponding points, the tangent vector of surface curve on a regular surface and that of its
original image curve determine each other uniquely, and the similar case is true to their second derived vectors.

As for a concrete computation, please refer to formulae (1) and (2).
2 Problem Statements

Since most CAD systems adopt parametric representations for free-form shapes, we mainly consider the issue
of interpolation curve on parametric surfaces.

Problem 1. Given an arbitrary sequence r, i=1,...,s, of points on a C' regular surface, where r>2, find an
interpolation curve passing them with tangent direction ¢ at corresponding point r;.

Problem 2. Find an interpolation curve passing an arbitrary sequence r;, i=1,...,5, of points on a C' regular
surface (r >3 ) on conditions that the curve’s tangent direction and geodesic curvatures or curvature vectors at any
points r; are specified.

Problem 3. Given two curves on a surface, find a transition curve on the surface that connects the known

curves at two specified points with G' or G* continuity at the two points.

3 Interpolation and Blending on Surfaces

In this section, we want to solve the above problems with the so-called functional spline method™. Hartmann
et al. once used this method successfully in creating a G* interpolation curve expressed by the intersection curve of
a given surface and a functional spline surface (implicit)?®!. However, with the presented method, the interpolation is
processing in parametric plane other than in space. In addition, the last interpolation curve is represented implicitly
by a plane curve in parametric plane instead of by the intersection of two surfaces which always involves
complicated algorithms of finding surface- to-surface intersection when there is a need to display the interpolation

curve, for example, when people handle the trimming surface problem.
3.1 Interpolation problem 1

First, we target problem 1. It is sufficient to consider the interpolation curve defined by only a pair of points,
such as r,r, with the prescribed unit vectors 7, T, at the corresponding points on the surface r(u,V) since our
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tactics is a piecewise interpolation. As points on the regular surface, r and r, correspond uniquely to the original
image points respectively, say a=U,V,) and a=Uu,,V,) in parametric plane under the mapping r. We indeed are

able to solve the original image points through traditional Newton iteration method. However we strongly
recommend another method presented in Ref.[10] that has a better compute stability and a quicker convergence rate
than the traditional methods. Sometimes if we want to get an exact image point instead of an approximate one, then
such methods as the resultant method!'"), the Grébner Base method!'?! and Sederberg method!'* can all be used to
deal with the issue. Moreover, from Proposition 5, under the tangent mapping dr, the tangent vectors T,,7, at
corresponding points r, r, of the desired interpolation curve determine respectively their original image vectors
that belong to the tangent spaces at their corresponding points in parametric plane. Let us assume the original image
vectors are t,¢, respectively, which actually are the tangent vectors at points a,, a, of the plane curve
determined uniquely by the desired interpolation curve on surface. In fact, they can be computed by Eq.(1) or (5).
See Figs.1~2.

A U,V

r R
H:}\/aém
T,
\\ -

Fig.1 Interpolation on surface Fig.2 Interpolation on parametric plane

Now the problem of interpolation on surface is reduced to the same problem on plane, which is easy to solve

referring to the results?*),

Before getting the equation of interpolation curve, the following assumptions are
necessary. Let x,=(U,,Vv,),x,=(U,,V,) be the coordinate vectors of the points a,,a, in parametric plane

respectively, @(x)=n(x—x)=0 the normal equation of straight line |,

i which passes a;along the vector ¢,

i=12, and g,(x)=n,(x—x)=0 the connecting line equation of the points «,, a,, where x =(u,v). In addition,
the assumptions ¢,(x,) >0, ¢,(x)>0 (otherwise, we multiply g,or g, by “—1) are also necessary. Then from Li
et al.””! the desired interpolation curve that possesses the tangent vectors #,,¢, at the points a,, a, respectively can

be expressed as follows:

(1-4)9,9, +4 9> =0, 0<u<l 6)

The constant x# can be used as a shape parameter in adjusting the shape of the interpolation curve.
Furthermore let «; be the original image point of » in parametric plane, 7; the unit tangent vector of the desired
curve at the point r, and ¢, the unit original image vector of 7, under the tangent mapping dr. If g;(x)=0,

i=1,...,5are the normal equations of straight line |, that passes @, along the vector ¢, i=1,...,s, then the solution

of problem 1 can be expressed piecewisely as follows:

r(U,V) =(X(U,V), Y(U,V)aZ(U,V))T and (1 - ,Lli )g| gi+1 + H i gi2,i+l =0 > 0< Hi <1 (7)

where @ ;,(¥)=n;,(x—x)=0 is the normal equation of the straight line connecting &; and a i=L..,s—1.

i+l
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Similarly all g, , i=1,...,5—1, are shape parameters for the last shape modification of the whole interpolation curve.
Remark 1. Referring to Hartmann’s method™, we can easily get a G* continuous surface curve with the

curvature vector at one of those specified interpolation points. Here all g;, i=L..,s—1, are fixed values

determined by the prescribed curvature.
3.2 Interpolation problem 2

As for problem 2, we only consider the case that curvature vector of the interpolation points are specified (the
cases for a given geodesic curvature can be handled similarly). Given a sequence of triplets (r,T.ki), i=1,...,S,
where 7; and k; are the tangent vector and the curvature of the desired curve at point #; respectively, from
Propositions 1 and 5 we know every triplet (r,7T;,ki) has an unique original image triplet corresponding to itself
under the mapping r and its tangent mapping dr. Writing it as (a;,#,K;), where # and k; are the tangent vector and the
curvature of the corresponding curve in parametric plane at point a; respectively, they can be computed by (1) or (5)
and (3) respectively with the given T;j and k;. Now the problem is reduced to interpolating the triplet (a;,f.k;),
i=1,...,s, in plane. Similar to dealing with problem 1, we only consider one pair of triplet, i.e., the case S=2. Let us
assume that t; , is an unit vector with the direction a@,—ay, ¢, is not parallel to ¢ ,, and x, =(U,,,), x, = (U,,V,) represent
the coordinate vectors of the points a;, a, respectively, then the implicit equation of the circle that passes the point

a, and possesses the tangent vector ¢, and the curvature k; at a; is

(o Y (1Y
f](x):[x_x]_k_l[—l 0}1] _[k_lJ =0 ®)

Similarly, we can get another circle that passes the point a, and possesses the tangent vector ¢, and the curvature k,

(o 10N Y (1Y
fz(x)z[x—xz _k_z(—l 0}2} _(EJ =0 ©)

Next, take the straight line determined by the two points a,, a, as the transversal curve that is needed in

at a,. Its equation is

constructing a desired function spline. Let the equation of the straight line be 0,(xX)=n,(x—x,)=0. Assume
f,(x,)>0 and f,(x)>0 (otherwise, we multiply f or f, by “~17). Then from Li et al.”? the equation of curve

that interpolates the triplets (a;,,k;), i=1,2, in parametric plane is

) == ff,—ug’ =0, 0<u<l.

Its corresponding surface curve that interpolate the triplets (1, 7;,K,;), i=12, on the given surface is

HUV=0WVYWV.2WY)) and f)=(1-wff,-ug) =0, 0<pu<l (10)

Thus, analogous to problem 1, it is easy to get the solution to problem 2.

Remark 2. Interpolation curve (7) or (10) possesses local property, i.e., changing one point or one tangent
vector or one curvature vector affects the shape of two neighboring curve segments while changing one shape
parameter y; affects only the shape of one corresponding curve segment.

Remark 3. As for displaying the surface curve (7) or (10), we need such an algorithm for tracing an implicit
plane curve as that described in Refs.[14~16].

Remark 4. As a by-production, this kinds of representation methods for surface curves such as that in solutions

to problems 1 and 2 also solves the problem of representation of the bound curve in parametric plane that
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determines the deformation regions!'”.

3.3 Blending curves on surfaces——problem 3

Actually, the problem of blending curve (as defined in Ref.[3]) on surfaces is a special case of interpolation
curves on surfaces. So those interpolation methods described in the above sections can be used directly in
constructing a G' or G* blending curve (transition curve) between two given curves parametrically or implicitly on a
parametric surface. The blending curve is completely determined by the tangents or tangents and curvatures at the
two ends of the transition curve segment and has nothing to do with the global geometry and representation of the
two given curves. In contrast to the general interpolation problem, we must first specify two points on two curves,
compute the tangent directions or curvatures of two surface curves at the two points respectively, and use them as
interpolation conditions. Then the remaining work for us to do is similar to dealing with the interpolation issue. As
for curvature computation of surface curves with all kinds of expression forms, one can consult the formulae given
out in Ref.[3].

4 Examples and Comparisons

For the sake of simplicity, we take a paraboloid for example and construct an interpolation curve on it to

demonstrate the presented method. Let its equation be:
r(u,v) = (U,v,(—u* =v*)/8+9/4), (u,v)e[-4,4]x[—4,4].

Specify the interpolation conditions on the paraboloid as follows:
r=(-2~2,0,5/4), T\=(5,5,5/2 12); r,=(2,-2,5/4), T:=(2,-4.3).
According to Section 3.1 we obtain the corresponding interpolation conditions on parametric plane:
@ =(-2+2,0), 6,=(5,5); 2:=(2,-2), ,=(2,4).
Construct a planar interpolation curve, which passes the two points a;, a, with the corresponding tangent

vectors t;, t,. See Fig.4. Here we take the shape parameter (see Section 3.1) as £ =0.17, then the equation of the

surface curve (see Fig.3) is

F(U,V) = (U,V,(-Uu> —v?)/8+9/4), f(x)=fu,v)=0.

vA
L
/ '
153
Fig.3 G'interpolation curve segment on a paraboloid Fig.4 Interpolation curve segment on

parametric plane

Still taking a paraboloid as an example, we construct a surface interpolation curve passing the given end points
with the specified tangent directions and curvature vector at the end points.

Let’s adopt the interpolation conditions on surface as follows:
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m=(=2+/2,0,5/4), T\=(0,—2/2 ,0), k;=(~/2 /4,0,0); r,=(2,-2,5/4), T»=(2,2,0), k,=(—1/4,1/4,0),
where k|, k, denote the curvature vectors of the desired surface curve at the two end points. Compute their
counterparts in parametric plane and write them as follows:
a1 =(=2~/2,0), 6=(0,2+2), ku1=v2 /4; 2:=(2,-2,), 6=(2,2), kia=+/2 /4.
Then using the method described in Section 3.2, we get the equation of the original image curve f(x)=0. Finally,
analogous to (10), the equation of the desired surface curve can be obtained. See Figs.5~6, where the shape

parameter is taken as £=0.35.

A
v
X pu
//f ; a 2
t f(x)= 0 a)
Fig.5 G? Interpolation curve segment on a Fig 6 G? Interpolation curve segment on
paraboloid parametric plane

Now we construct a G' continuous interpolation curve on the paraboloid. Take the interpolation conditions on

the surface as follows:
=242 0,5/4), Ty=(0,-22 ,0); rp=(2,-2,5/4), T12=(2,2,0);
r1=(2,-2,5/4), T,1=(5,5,0); r»=(0,0,9/4), T5,=(-2,-2,0).
Analogously, compute their counterparts on parametric plane and write them as follows:
a1 =(-24/2.,0), 11=(0,-242 ); @1,=(2,-2), £ 1,=(2.2);
a21=(2,-2), £ 1=(5,5); 3227(0,0), £ =(-2,-2).

Then construct planar interpolation curve f(x)=0 (see Fig.8). The desired curve is the image curve of the curve
f(x)=0 under the mapping r(u,v). See Fig.7. A
v

f(x)=0

Fig.7 G? continuous interpolation curve on a paraboloid Fig.8 The original image curve on parametric plane

The examples presented above demonstrate the method is effective. Compared with the existing main

method?), its interpolation process proceeds in parametric plane rather than in space. It can be used in the cases that
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not only the geodesic curvature but also curvature vector at every interpolation point is prescribed (in Figs.5~6,
curvature vector instead of geodesic curvature are prescribed as interpolation data). Moreover, it involves only
tracing an implicit planar curve instead of any surface-to-surface algorithm, usually a troublesome process, on
which the method ! often depends, for displaying the resulting interpolation curves. In addition, Ref.[4] also
reports a G' interpolation method. In contrast to this method, the interpolation curve generated by the presented
method obviously has good controllability since we introduce free shape parameters into every interpolation curve
segment that can be used in interactive modification, and interpolation process does not need to perform any
curve-to-surface intersection. Reference [5] describes a C' interpolation, of which the resulting interpolation curve
is a composed curve. Unfortunately, a curve generated by composition might have a very high degree; For a
bi-cubic surface composed with a cubic curve, the resulting surface curve has a degree 18 that might be prohibited
in most CAD systems. Compared with it, this method relaxes the limitation of interpolation conditions, avoids high

degree of interpolation curve, and has more comprehensive applicability in CAD engineering practice.
5 Conclusions

Approaches for the representation of surface curves have been developed. The main idea of the methods and
their marked difference from the existing methods lie in the fact that we transform the problem of representation of
the surface curves into the one of representation of the planar curves and that the distribution of interpolation points
can be arbitrary. The concrete steps of the method are summed up as follows:

® Prescribe the interpolation information such as points, tangent vectors and curvature on surface.

® Compute the corresponding interpolation information on parametric plane.

® Construct planar interpolation curve.

Though we only pay an attention to the representation of curves contained in parametric surface in Section 4.1,
in fact, the method can deal with the representation of curves contained in such an implicit surface that can be
parameterized. What is more, with the help of the thoughts of the presented method, many good methods designed

for general interpolation curves can be used in dealing with the issue of interpolation curves on surfaces.
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