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Abstract: An approach is introduced to derive specificity in default theories. Compared with other methods, the 
method handles priority quite well and has lower complexity. Then the prioritized stationary semantic for default 
logic is defined. The method can strengthen the cautious stationary default reasoning without increasing the 
computational complexity very much. 
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摘  要: 引进了一种在缺省理论中提取优先序的方法.与已有方法相比,此方法不仅具有合理性且具有低难度.
进而定义了缺省逻辑的优先稳定语义.这种方法在不增加复杂性的情况下,增强了谨慎稳定缺省推理的能力. 
关键词: 缺省逻辑;特殊性;稳定扩充;复杂性 
中图法分类号: TP18  文献标识码: A  

Reiter’s default logic[1], DL for short, is one of the most popular nonmonotonic formulisms. In DL, a default 
theory consists of a set W of propositional formulas and a set D of defaults. Each default is of the form  

 
C

BBA n,...,: 1 . 
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Extensions of a default theory are defined as fixed points of the operator Γ which maps an arbitrary set S of 

formulas to the smallest deductively closed set S' such that S' contains W and that if D
C

BBA n ∈
,...,: 1 , A S′∈  and  

S├ iB¬  for any i then C S′∈ . In default logic, two decision problems which are most relevant and have been  

extensively studied in the literature, are brave reasoning, deciding if a formula belongs to at least one extension, and 
cautious reasoning, deciding if a formula belongs to all extensions. The popularity of DL is basically due to two 
reasons. Firstly, the way defaults are represented is natural and intuitive[1]. Secondly, DL has great expressiveness[2]. 
This expressiveness makes DL as a powerful tool for knowledge representation and reasoning. Nevertheless, default 
reasoning suffers from some serious deficiencies. Firstly, brave reasoning is too strong, usually some conflicting 
formulas can be derived, while cautious reasoning is very weak. Sometimes we can get nothing by cautious 
reasoning except the initial knowledge. 

Example 1.1.  Let W consist of the following formulas. 
 penguin(tweety),  penguin(tweety)  bird(tweety). ⇒

And let D consist of the following defaults. 

 bird( ) : fly( )
fly( )

tweety tweety
tweety , penguin( ): fly( )

fly( )
¬

¬
tweety tweety

tweety . 

Then both fly(tweety) and ¬ fly(tweety) can be bravely deduced from (D,W). But nothing except 
formulas in W can be cautiously deduced. 

The second deficiency of default reasoning is its high computational complexity. Generally, default reasoning 
is at the second level of the polynomial hierarchy[2~4]. That is to say, default reasoning is much more harder than 
monotonic reasoning. Even in cases when the underlying monotonic reasoning can be done in polynomial time 
default reasoning is still intractable (see Refs.[4~6]). The high complexity is an obstacle to use DL as a tool of 
knowledge representation and reasoning. 

Thirdly, a default theory may have no extensions, in this case, default reasoning is undefined. In 1994, 
Przymusinska and Przymusinsky introduced the stationary semantic for default theories[7]. A set S of formulas is 
said to be a stationary extension if it is a fixed point of Г2, that is, ( ( ))S S= Γ Γ . Stationary extensions have some 

nice properties[7]. For instance, every default theory has the smallest stationary extension. This makes cautious 
stationary reasoning a little bit easier (see Ref.[8]). However, cautious stationary reasoning is too weak, even 
weaker than cautious reasoning. 
 Example 1.2.  Let W s{ , }y a= ⇒ , and let  

s y s m a mD
y m m

 : : ¬ :
= , , . 

¬ 
 

It is easy to see that  occur in every extension of y a, ( )D W, . But they do not occur in the smallest stationary 
extension (which is Th ) of ( )W ( )D W, . 

A partial reason why default logic has the above-mentioned drawbacks is that it does not prefer more specific 
defaults over more general ones. Specificity is a fundamental principle of commonsense reasoning, and it is 
commonly accepted that conclusions based one more general default rules should be given up when more specific 
conflicting rules are available. Default logic does not obey this principle. Let us take birds and penguins for instance 
(see Example 1.1). Intuitively, being a penguin is much more specific than being a bird, and in this case of conflict, 
we would like to use more specific default. But the default theory in Example 1.1 generates two extensions instead 
of preferring the more specific one. 

In the literature there are several methods to find orders of specificity between defaults by using the 
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information of the given default theories. Although these approaches handle specificity quite well, all of them suffer 
from some deficiencies (see section 1). In section 2, we present a new method to derive specificity. Based on this 
order of specificity we introduce the notion of preferred stationary extensions. The approach enjoys nice 
computational property. It can strengthen the cautious stationary reasoning without increasing the complexity very 
much. 

1   Preliminaries and Realted Work 

In this paper we shall restrict ourselves to normal default theories. And we will use somewhat simplified 

notations, for example we write default 
B

BA :  as A B→ . In order to show how the specificity can be defined we 

first split the initial knowledge W in our default theories into two parts, as is common in conditional approaches (see 
Refs.[9~12]). 

A set T representing background knowledge, and a set C representing the contingent facts. 
The background knowledge containing monotonic rules, like “penguin are birds”, whereas C represents what is 

known about the current case or situation. 
Definition 1.1. A default theory is a triple (C,T,D) where  
(1) C is a set of literals  
(2) T is a set of monotonic rules of the form   1 ... nb b∧ ∧ ⇒ a

a(3) D is a set of default rules of the form  1 ... nb b∧ ∧ →

(4)  is consistent. C T∪
We say E is an extension of ( )C T D, ,  if E is a Reiter extension of  (see Ref.[1]).  ( )C T D∪ ,

Please notice that in the above definition we use  to denote a default implication. The material implication 
is represented by the symbol . Intuitively,  means that “generally, if b holds then a holds”, while  
means that “whenever b holds then a holds”. Given a rule d (either monotonic or default), the set of the literals on 
the left is called the prerequisite of the rule, denoted as pre(d), while the literal on the right is called the conclusion, 
denoted as c(d). A rule is called Horn if its prerequisite consists of only positive literals (i.e. propositional atoms). 

→

⇒ b a→ b a⇒

Let D be a set of default rules. D+ is obtained from D by treating every rule in D as material implication.  

1.1   System Z 
In Pearl’s system Z [11] a set of default rules is partitioned into an ordered list of mutually exclusive sets of rule 

. Lower ranked rules are considered less specific than higher ranked rules. More precisely, let  

be a default theory. A default rule is in  if adding its prerequisite to 

0 1 ... nD D D, , , ( )C T D, ,

0D T D+∪  does not lead to inconsistency, 

where D+ is obtained from D by treating every rule in D as material implication. Similarly, a rule is in Di if it is not 

in  forjD j i<  and adding its prerequisite to 1
0( i

j jT D D )+−
=∪ −U  does not result in inconsistency. 

Example 1.2.  Let C = ∅ , { }T p b= ⇒  and let  consist of:  D
1. ,  2. ,  3.  b f→ p →¬f b w→
The partition contains two sets: , and 0 {1 3}D = , 1 {2}D = . Then rule 2 is considered of higher priority. 

The main problem of this method is that it will introduce unwanted priorities. Let consider the following 
example. 

Example 1.3.  Let C = ∅ , T = ∅  and D consist of the following rules.  
1 a. → s     32 b s. → ¬ c t. →   4 a b. →  
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The partition contains two sets: , D0 {2 3}D = , 1={1,4}. Intuitively, rule 4 tells us that a is a more specific set 

than , therefore rule 1 should get priority over rule 2. But since there is no information about the relative 
sepecificity of and , there should be no priority relationship among rule 1 and rule 3. However, system

b
a c Z gives 

rule 1 higher priority than rule 3.  

1.2   Brewka’s method 

    In Ref.[9], Brewka presented another method to derive priorities.  
Definition 1.4. Let ( )C T D, ,  be a default theory. A subset R D⊆  is said to be conflicting if and only if for 

some , adding the prerequisite of  to  leads to inconsistency.   d R∈ d T R+∪
Definition 1.5. Let ( )C T D, ,  be a default theory, 1 2d d D, ∈ . We say d1 has priority over d2, written as 

, whenever  1d d< 2

(1) d1 and d2 are contained in a minimal set R D⊆  which is conflicting, and 

(2) Adding the prerequisite of to T1d R+∪ will lead to inconsistency, whereas adding the prerequisite of d2 does 

not result in inconsistency.  
Let us consider the default theory in Example 1.3. Clearly, rule 1 < rule 2, rule 4 < rule 2, but neither rule 1 nor 

rule 4 gets priority over rule 3. 
The main drawback of Brewka’s method is its high computational complexity of determining whether  

for a given pair of rules  and . To see if 
1 2d d<

1d 2d 1d d2< , we have to at first guess a subset R D⊆  
containing and , then check if 1d 2d R  is minimal conflicting. If this condition holds then check the condition (2) in 

Definition 1.5. If this condition holds then return yes. It is easy to see that the above procedure runs 
non-deterministically with polynomial many calls to the oracle of consistency checking. Thus the problem of 

determining if is in 1d < 2d 2 .P∑  Even if the default theory consists of only Horn rules, the problem will be in NP . 

In another paper we shall present a precise analysis of the lower bound of this problem.  

1.3   Dung and son’s method 

In Ref.[10], Phan Minh Dung and Tran Cao Son defined a specificity order Kp  between defaults with respect 

to a set K  of defaults. For simplicity we shall redefine the order using our own notations.  
Definition 1.6. Let ( )C T D, ,  be a default theory, 1 2d d D, ∈  and R D⊆ . We say that  is more specific than 

 with respect to
1d

2d K , denoted as , if  1 Kd dp 2

)

(1) Adding conclusions of d1 and d2 to T will lead to inconsistency. 
(2) Every literal of the prerequisite of d2 occurs in at least one extension of the default theory .  1( ( ) , )pre d T K,

(3) There is no literal , not only  occurs in some extension of a a 1( ( ) ,pre d T K,  but  occurs in some 

extension also.  
a¬

The main difference between Brewka’s method and Dung and Son’s method is that the later does not consider 
default rules as ordinary rules. As Brewka’s method, the deficiency of Dung and Son’s method is its high  

complexity. Generally speaking, determining if a literal appears in some extension is -complete (see 

Refs.[3,4]). Thus, the problem deciding if  will lie in . We will also analyze the lower bound of this 
problem in another paper. 

∑P
2

1 Kd dp 2
P
3∆

Certainly, there are tremendous amount of literature on the notion of specificity in Artificial Intelligence (see 
Refs.[9,11,13~16]). Different intuitions lead to different approaches to define specificity. For example, Baader and 
Hollunder dealt with terminological systems and assumed to get the specificity information from the terminological 
reasoner. However, most of these approaches impose rather severe restriction on the syntax of the represented 

  



 1534 Journal of Software  软件学报  2003,14(9)    

theories and for this reasoning we do not mention other methods here.  

2   A New Approach to Derive Specificity 

In this section we present a new method to derive specificity. Both Pearl’s method and Brewka’s Method 
consider default rules as ordinary ones during the definition of specificity. Whereas Dung and Son’s method does 
not change the status of the rules. Our method will consider ordinal rules as default rules when defining the priority. 

Given a set  of monotonic rules, T T −  is obtained from T  by replacing each material implication by default 
implication.  

Definition 2.1. Let ( )C T D, , be a default theory, 1 2d d D, ∈ . We say  is more specific than , denoted as 
, if the following hold:  

1d 2d

1d dp 2

D

(1) Every literal of the prerequisite of d2 occurs in some extension of .  1( ( ), , )pre d T D−∅ ∪

(2) There is a literal in pre(d1) such that it does not appear in any extension of . 2( ( ), , )pre d T D−∅ ∪

Let us consider the default theory in Example 1.2. According to Brewka’s method, rule 2 does not get priority 
over rule 3. But according to our definition we have rule 2  rule 3. This is not unintuitive. Roughly speaking, the 
monotonic rule in T  says that  is more specific than . Thus, it is quite natural that rule 2 gets priority over  

p

p p

rule 3. 
Example 2.2.  Let , ,C T= ∅ =∅  consists of the following defaults.  
1. a → b c    3.    2. a c→¬ b → 4. c a→

According to Brewka’s order, we see that rule 1 has priority over rule 3. But in our opinion, there is no priority 
between rule 1 and rule 3. Intuitively, rule 1 tells us that is a more specific class than . On the other hand, rule 
3 and rule 4 tell us that  is more specific than . In this case we can not decide which of them is more specific.  

a b
b a

That is the reason why rule 1 p  rule 3. 
Our method does not introduce unwanted priority. Let us consider the default theory in Example 1.3. Although 

system Z  gives rule 1 unnatural priority over rule 3, our approach does not, that is, rule 1 p  rule 3. 
An advantage of our approach is its lower complexity. According to Definition 2.1, whether  can be 

decided on a deterministic Turing machine with polynomial many calls to the oracle determining if a literal occurs 
in some extension of a default theory 

1d dp 2

( , , )C D∅ . By the results in Refs.[4,5], the oracle is a NP-complete problem. 

Therefore   

Lemma 2.3. Let  be a default theory, ( , , )C T D 1 2d d D, ∈ . The problem deciding if  is in . 1d dp 2
P
2∆

At this moment I am not able to show its -completeness. The next two theorems show that this problem is P
2∆

both NP-hard and co-NP-hard. 
Theorem 2.4. Given a default theory  and two defaults ( , , )C T D 1 2d d D, ∈ . The problem determining if 

 is NP-hard. 1d dp 2

CProof.  We shall define a polynomial reduction from 3-CNF formulas. Let 1 ... nCϕ = ∧ ∧ , where each  
is a clause . For each , 

iC
( i i ia b c∨ ∨ ) i 1 i n≤ ≤ , pick a new propositional atom . Finally pick three fresh 

atoms
it

, ,s t u . Let  consist of the following groups of defaults. D
(I) For each propositional atom x  appearing in ϕ , the defaults s x→ , s x→¬ . 
(II) For each clause ( )i i i iC a b c= ∨ ∨ , , the defaults , b t , . 1 i n≤ ≤ i ia t→ i i→ i ic t→

(III) The single rule 1 ... nt t t∧ ∧ → . 

(IV) The single rule . t u→
We fix a default rule in group (I) as , and write the rule in group (IV) as . The theorem follows from the 

following claim. 
1d 2d
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Claim. ϕ is satisfiable if and only if  in default theory 1d dp 2 ( , , )D∅ ∅ . 

Proof of the claim. 
( )⇒  Suppose  is truth assignment under which v ϕ  is true. Define  

1{ ( ) 1} { ( ) 0} { ,..., } { , , }nS x v x x v x t t s t u= = ∪ ¬ = ∪ ∪ . 

It is not difficult to verify that  is an extension of S ({ }, , )s D∅ . On the other hand,  is the unique 
extension of . By Definition 2.1, we know . 

{ , }t u
({ }, , )t D∅ 1 2d dp

( )⇐  Suppose . Then occurs in one extension  of 1d dp 2 t E ({ }, , )s D∅ . It is easy to see that  is obtained 
by an application of the rule in group (III). That means, 

t
Ett nt ∈,...,1, 2 . By the same argument we know that for 

each , at least one of , and c is in . Consequently, i ia ib i E ϕ  is in satisfiable.   
Theorem 2.5. Given a default theory  and two defaults ( , , )C T D 1 2d d D, ∈ . The problem determining if 

 is co-1d dp 2 NP -hard. 
Proof.  We shall define a polynomial reduction from 3-CNF formulas. Let 1 ... nC Cϕ = ∧ ∧ , where each  

is a clause . For each , , pick a new propositional atom . Finally pick two fresh atoms
iC

,( i i ia b c∨ ∨ ) i 1 i n≤ ≤ it s t . 

Let  consist of the following groups of defaults. D
(I) For each propositional atom x  appearing in ϕ , the defaults s x→ , s x→¬ . 
(II) For each clause ( )i i i iC a b c= ∨ ∨ , , the defaults , , c t  1 i n≤ ≤ i ia t→ i ib t→ i i→

(III) The single rule 1 ... nt t t∧ ∧ → . 

(IV) The single rule . t s→
We write the rule in group (IV) as , and pick a rule in group (I) as . The theorem follows from the 

following claim. 
1d 2d

Claim. ϕ is unsatisfiable if and only if  in default theory 1d dp 2 ( , , )D∅ ∅ . 

Proof of the claim. 
( )⇒  Suppose ϕ  is unsatisfiable. It is not hard to see that  can not occur in any extension of t ({ }, , )s D∅ . 

Clearly, s  appears in some extension of . Thus, . ({ }, , )t D∅ 1 2dd p

( )⇐  Suppose . Then t  does not occur in any extension of 1d dp 2 ({ }, , )s D∅ . This implies that ϕ is 

unsatisfiable.   
In some restricted cases, defining the priority order can be done in polynomial time. It has been shown in 

Ref.[5] that the problem determining if a literal occurs in at least one extension of a default theory  can 
be solved in polynomial time provided that D consists of only Horn rules. As a result, deciding if in a default 

theory (C,T,D) can be solved in polynomial time whenever T and D consist of only Horn rules. Another polynomial 
case is that the prerequisite of every (either monotonic or default) rule consists of only one literal (see Ref.[6]). 

( , , )C D∅

1 2dd p

3   Prioitized Stationary Default Logic 

Priority order can make default reasoning more reasonable, however, priority order can not generally decrease 
the complexity greatly (see Ref.[17]). To decrease the computational complexity one has to develop new reasoning 
formalisms. A particular interesting version of default logic was proposed by Przymusinska and Przymusinsky in 
1994. Let us recall some notions. 

Definition 3.1.[1] Let be a default theory. For any set  of formulas, Γ(S) is the smallest set  

satisfying the following three properties:   

( , , )C T D S U

1. . C T U∪ ⊆

2. U is deductively closed. 
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3. If  and 1 ... nb b a∧ ∧ → ∈D S├ a¬  and b  for any i , then i U∈ a U∈ . 
Definition 3.2.[7] Let be a default theory. A theory  is called a stationary extension of  

if and only if   

( , , )C T D S ( , , )C T D

1. S⊆Γ(S), and 
2. S⊆Γ2(S)=Γ(Γ(S)). 
Stationary default logic has several advantages over classical default logic (see Refs.[7,8]). For example, every 

default theory has the smallest stationary extension which is the intersection of all stationary extensions. This 
property makes stationary cautious default reasoning much more easier (see Ref.[8]). Gottlob proved in Ref.[8] that 

determining if a formula appears in all stationary extensions is in , that is to say, this problem can be solved 
on a deterministic Turing machine with many calls to the oracle of consistency test. However, cautious 
stationary default reasoning is too weak (see e.g. Example 1.2). Whenever a default theory  contains 
conflicts, the smallest stationary is , which is the deductive closure of  (see Theorem 3.1 in 

Ref.[8]). In this section we shall introduce the notion of preferred stationary extensions. 

[log ]NP nP
log n

)T∪

( , , )C T D
(Th C ( )C T∪

Definition 3.3. Let  be a default theory. Define  by induction as follows.  ( , , )C T D iD

0D = ∅ . 

Suppose  has been defined. If iD iC T D +∪ ∪  is inconsistent or 1i iD D −= then let 1N i= −  and stop. 
Otherwise, define 

1

1

is - minimal default in such that

( ) and { ( )}
is consistent.

i

i i i i

d a D D

D D d C T D pre d C T D c d
−

+ +
+

 −
 

= ∪ ∪ ∪ ⊥ ∪ ∪ ∪ 
 
 

p

. 

Now we define NT T D+= ∪p  and . ND D D= −p

We say a theory  is a preferred stationary extension of  if it is a stationary extension of 
. 

S ( , , )C T D
( , , )C T Dp p

The following two theorems are not difficult to prove (see section 1 and Ref.[8]). 
Theorem 3.4. Cautious prioritized stationary default reasoning, that is, the problem determining if a formula 

occurs in every preferred stationary extensions, is in . P
2∆

Theorem 3.5. Given a default theory (C,T,D). The smallest stationary extension is a subset of the smallest 
preferred stationary extension. 

The above two theorems show that the priority can strengthen the cautious default reasoning without increasing 
the complexity very much. 

4   Conclusions 

In this paper we have given a new approach to derive specificity from normal default theories. Our approach 
when deriving specificity considers monotonic rules as default rules while existing methods consider default rules 
as monotonic rules. This difference makes our method much easier with respect to polynomial reduction. We have 

shown that the problem of deciding whether a default has priority over other one is in , that is, it can be solved 

in a deterministic Turing machine with polynomial many calls to an NP oracle. However, the question whether this 

problem is -complete is open. We have proved that it is both NP-hard and co-NP-hard. Some tractable cases 

have been indicated. Furthermore, we introduce the prioritized stationary semantics for default theories. The 

P
2∆

P
2∆
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complexity of default reasoning based on this semantics has been also discussed.  

References 
[1]   Reiter R. A logic for default reasoning. Artificial Intelligence, 1980,13:81~132.  

[2]   Marek W, Truszczyński M. Nonmonotonic Logic. Berlin: Springer-Verlag, 1993.  

[3]   Gottlob G. Complexity results for non-monotonic logics. Journal of Logic and Computation, 1992,2:397~425.  

[4]   Stillman J. It’s not my default: the complexity of membership problems in restricted propositional default logics. In: Proceedings of 

the 8th National Conference on Artificial Intelligence (AAAI-92). Boston, 1992. 794~799.  

[5]   Kautz HA, Selman B. Hard problems for simple default logics. Artificial Intelligence, 1990,42:311~348.  

[6]   Zhao XS, Ding DC. Complexity results for 2CNF default theories. Fundamenta Informaticae, 2001,45:393~404.  

[7]   Przymusinka H, Przymusinski T. Stationary default extensions. Fundamenta Informaticae, 1994,21:67~87. 

[8]   Gottlob G. The complexity of default reasoning under the stationary fixed point semantics. Information and Computation, 1995, 

121:81~92.  

[9]   Brewka G. Adding Priority and specificity to default logic. Lecture Notes in Artificial Intelligence 838, Berlin: Springer-Verlag, 

1994. 247~260.  

[10]   Dung PM, Son TC. Default reasoning with specificity. Lecture Notes in Artificial Intelligence 1861, Berlin: Springer-Verlag, 2000. 

792~805.  

[11]   Pearl J, System Z. A natural ordering of defaults with tractable applications to nonmonotonic reasoning. In: Proceedings of the 3rd 

Conference on Theoretical Aspects of Reasoning about Knowledge. Pacific Grove, 1990. 121~135.  

[12]   Eiter T, Lukasiewicz T. Default reasoning from conditional knowledge bases: Complexity and tractable cases. Artificial 

Intelligence, 2000,124:169~241.  

[13]   Baader F, Hollunder B. Priorities on default with prerequisities and their application in treating specifying in terminological default 

logic. Journal of Automated Reasoning, 1995,15:41~68.  

[14]   Delgrand JP, Schaub TH. A general approach to specificity in default reasoning. In: Proceedings of the 4th International 

Conference on Knowledge Representation and Reasoning (KR’94). Bonn: Morgan Kaufmann Publishers, 1994. 47~158.  

[15]   Poole D. On the comparison of theories: Prefering the most specific explanation. In: Proceedings of the IJCAI-85. Los Angeles: 

Morgan Kaufmann Publishers, 1985. 144~147.  

[16]   Reiter R, Criscuolo G. On interacting defaults. In: Ginsberg ML, ed. Readings in Nonmonotonic Reasoning. Morgan Kaufmann 

Publishers, 1987.  

[17]   Rintanen J. Complexity of prioritized default logics. Journal of Artificial Intelligence Research, 1998,9:423~461. 

  


	Preliminaries and Realted Work
	System Z
	Brewka’s method
	Dung and son’s method

	A New Approach to Derive Specificity
	Prioitized Stationary Default Logic
	Conclusions

