1000-9825/2003/14(04)0757 ©2003 Journal of Software %% 1 % R Vol.14, No.4

—ME T BAESEWNITIEREGER AL
RRX', T8k #EX
(B RHOR SR 5 TR 250U)T BeHS 610054)
A Workflow Instance Migration Approach Based on the Extended-Task-Structures

ZHOU Ming-Tian', WANG Min-Yi, YAO Shao-Wen

(College of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054,
China)

+ Corresponding author: Phn: 86-28-83203300, E-mail: mtzhou@uestc.edu.cn

http://www.uestc.edu.cn

Received 2001-09-20; Accepted 2002-08-02

Zhou MT, Wang MY, Yao SW. A workflow instance migration approach based on the extended-task-
structures. Journal of Software, 2003,14(4):757~763.

Abstract: Workflow instance migration is a typical and important problem in the research of workflow evolution.
Underlying the definitions of the extended-task-structures based workflow, some rules, conditions and an algorithm
for workflow instance migration are presented, which are suited to generic dynamic changes. By the comparisons
with other similar research works, the advantages of the approach in terms of applicability, universality, correctness
and practicality are illustrated.

Key words: workflow; workflow evolution; adaptive workflow; dynamic change; instance migration

B B IHAEPESRIHAENAATEAREEZY A ELTY BRIE 54 M0 TR R L8 A
ERETENTRAST ARG EAEHBAN . E4f Bk SR AR AR ZF EEERATE.
WA, EAMEAT LIE S F 5 @A — e i,

KR TAER, TAEREA A EE IR S T E A

hEESES: TP311 XEkFRIRED: A

Flexible and adaptive workflow is one of main issues in the research of advanced workflow!'?!. Furthermore,

* Supported by the Science Foundation of Electronics of China under Grant No.51415010101DZ0233 (H, 7R3 4r)

ZHOU Ming-Tian was born in 1939. He is a professor and doctoral supervisor of the College of Computer Science and
Engineering, University of Electronic Science and Technology of China. His current research interests include computer networking
information system, open distributed processing system, computer system and software, and computer supported collaboration work.
WANG Min-Yi was born in 1973. He is a Ph.D. candidate at the College of Computer Science and Engineering, University of Electrical
Science and Technique of China. His research interests are distributed object technology, computer supported collaboration work,
intelligent agents. YAO Shao-Wen was born in 1966. He is an associate professor and also a Ph.D. candidate of College of Computer
Science and Engineering, University of Electrical Science and Technique of China. His current research is focused on protocol

engineering, Web-based knowledge representation and colored Petri-nets (CPN) modeling.

© rhiEpk

http:/ www. jos. org. cn

758 Journal of Software #AFF IR 2003,14(4)

the evolution of workflow instances, i.e. a running workflow instance changing its own schema on the fly, is
important for adaptive workflow to support dynamic changes. There are some deficiencies on the applicability,
universality and correctness in recently proposed methods®). In this paper, we discuss and address an important
problem, namely instance migration, in the context of workflow evolution. In other words, our focus is how a
running instance migrates its old schema to a new one in response to dynamic changes of schema. Based on the
formal workflow definitions, we present some rules, conditions and an algorithm for workflow instance migration.

Further analysis and comparisons illustrate the advantages of our approach.

1 Workflow Schema and Instance

[3.91

We adopt a popular workflow model, i.e. Task Structures'””’, and extend it to support data flow.

Definition 1. A workflow schema, also called workflow model or task model, describes some tasks, data and

relationship of dependency and links among them. Formally, it can be denoted as: W =(V,T,Y,C,E,V,,V,,V,,E,)>

where: V=T UY UC is a set of all nodes in the model; 7 is a set of tasks; Y is a set of synchronizers, which deal
with synchronization of concurrent routing; C is a set of conditional nodes, which make routing decision according

to bound conditions; U =7 U C is defined as a set of executable nodes and X =7 U Y as a set of terminal nodes;

A relation E c ¥V xV , called control flow, models the sequential order of nodes; V,cU is a set of initial
executable nodes, and 7, < X a set of terminal nodes; ¥ is a set of data elements in the model; the data flow

E, cUxV, x{read,write} indicates the links between executable nodes and data.

For simplicity, we just investigate the acyclic model and ignore the compensating tasks. We implement a
special implied task Z,, for every schema, which is able to initialize the data elements and instantiate the schema.

Similar as instantiation of class to object, the procedure that the engine of WfMS launches a workflow schema
is called instantiation too, and a running workflow is called an instance. In the runtime, there are several possible
states for a task of an instance, written:

StateOfy: W.V—{ NOT_ACTIVATE, ACTIVATED, RUNNING, COMPLETED }.

Definition 2. A workflow instance 1, =@Gd,w,S,) is the snapshot of a running workflow, reifying an

instant status of workflow, where: id is the identifier of the instance, owing to a schema may initialize several
concurrent instances at the same time; W is the corresponding schema, which is changeable during runtime; Sy is
the status of running instance, which is a quintuplet: S, =(_,7,,U,,Y,,D,), where

V. is a sequence of executed nodes: Yo . (v eV AStateOf,, (v) = COMPLETED);

T, is a set of scheduled and executing nodes: V,or (t € T A StateOf, (t) = RUNNING) ;
U is a set of activated and ready for scheduling nodes: V., (t €U AStateOf,, (pred,, (t)) = RUNNING) %
Y,, is a set of synchronizers waiting for synchronization:
Y ey, (V €Y A3 ppep, () (StateOfy, (1) = COMPLETED) A 3, prip, (,(StateOt, (¢) = COMPLETED)) %
D, is a set of data elements' value, which is instantiated from V.
Some criteria to ensure the consistency of workflow schema are listed as following:
(1) Structure Correctness

1) The Task Structure of schema should be connected, i.e., there should be a path between any two nodes

© rhiEpk

http:/ www. jos. org. cn

BRI F— KT RAE S5 TARRFEHIEA 7 % 759

. 3.
ignoring the direction of control edges: v, , 3, . . . (e =(,v,)Ae, =,)

ii) Every node should be on a path from an initial node to a terminating node:
_ _ s
v VEV3 voeVy.vi el (VO —Ho v Vi) >
iii) From any reachable status, it is possible to reach a terminal status:

* *
Vs, (S —>8,) =28y —— Sy 4 where: Su.begin and Sy, .,q are initial and terminal state.

W begin

(2) Data Correctness
i) Any data element read by an executable node must be initialized by the system or written by some
preceding task:

Yoy, Jev (t,d,read) € E;)) = 3, (1 <) A (', d, write) € E;) v (t,0,d, write) € E, ;

sys02
ii) The relationship of partial order between two executable nodes, which are conflicted in accessing some
. . ' ' 2 6
data element, is certain: V, , 3,0, (t $at) = (t < 'V < 1) °.

2 Instance Migration

2.1 Dynamic change
Definition 3. A dynamic change is the evolution of a schema occurring in the runtime of its instances, which
transfers the schema from W to W', written: &, =(W,W"). To an instance with the status Sy, the change migrates it

to the status Sy~ with the new schema W', written: &5 =(Sy.,Sy.,6;) or S, — S

2.2 State transformation rules

As the above definition, the dynamic change is essentially the valid state transformation between two
schemas. Considering different runtime states of a node, we give the following rules:
Voo A(V) : StateOf . (v) = s
AW):veW'(CuUY),s = PENDING
AW):veWV AveW'T,s = NOT _ACTIVATE
AW):veW.T AStateOf,, (v) = NOT _ACTIVATE,s = NOT _ ACTIVATE
A(W):veW.T AStateOf,, (v) = ACTIVATED,s = NOT _ ACTIVATE
A(Wv):veW.T AStateOf,, (v) = COMPLETED,s = COMPLETED
A(v):veW.T AStateOf,, (v) = RUNNING,s = HOLDING
Specially, we introduce two temporary states, i.e. HOLDING and PENDING, for the task and non-task nodes
respectively.
State Transformation Rules specify how an instance migrates its status with old schema to the status of new
schema. However, the rules don’t guarantee the availability of migration. So we will present the conditions on

migratable instance.
2.3 Migratable conditions of instance
2.3.1 Migratable state conditions (MSC)

Given a dynamic change & arising in the runtime of an instance 7, we propose three conditions to verify the

correctness of state transformation according to the above rules, described as following:

© hEE

AT hupy/ www. jos. org. cn

760 Journal of Software #AFF IR 2003,14(4)

Vo 1 (StateOf,, (t) = COMPLETED) =

teW'T A (MS -1)
3,y 7 (StateOf, (') # COMPLETED) A (¢ <., 1)) A (MS — i)
;. (g €W'Vy nty—L51) (MS — iii)

Theorem. The state transformation &g =(S,,,S,.,J,,) is correct iff the instance migration satisfies the MSC.

Proof. 1t is obvious that the MSC is necessary to a correct state transformation. So we just prove the
sufficiency of the conditions.

Actually, we need only prove that Sy is reachable if the change satisfies the MSC. Therefore we construct a
virtual enactment to reach Sy.. The enactment adopts the same scheduling strategy as the workflow engine, but does
not really launch the tasks. Any concurrent routing running in the enactment will stop scheduling the tasks when
meeting either the task with the state NOT ACTIVATE, HOLDING, or the terminal node.

We suppose that there be a completed task ¢, € W'.T without being “scheduled” after the virtual enactment is
over. According to the condition (MS—iii), we can find a path p from some initial item #, to #,. Considering the

procedure of the enactment, it’s deducible that the preceding node #, | of #, on the path must not be enacted. From
the condition (MS—-ii): StateOfy(t,_;)=COMPLETED. Similarly, we trace along the path p back to 7, with

StateOfy(ty)) = COMPLETED and ¢, is not enacted. Obviously, it is impossible. Thus the hypothesis just made is
wrong.
As a result, we say that the state Sy~ is reachable and the sufficiency of the conditions is proven. O

2.3.2 Migratable data conditions (MDC)

The MSC take into account the control flow and state of task, next we will give the migratable conditions
relating to the data flow.

While the correctness criteria of schema and MSC of instance are satisfied, it is allowable either to add or to
remove data links, without breaking the consistency of instance state.

First, we review the data correctness condition ii) deeply. Obviously, swapping the order of completed tasks
may lead to inconsistency of data results, although such kind of structural change satisfies the correctness criteria of

schema and MSC. As a result, the migration should satisfy the following condition to keep the data flow consistent:

=3, 1, a1 (StateOfy, . (1)) = StateOf,, . (1,) = COMPLETED) A (8, fa 1,) A (8 <jp b, ATy <i 1)) (MD—i)

Second, the data elements can influence the execution of the tasks, as well as the routing of instance enactment, in
other words, the choice of conditional nodes. A prerequisite to the successful migration is that any referenced data
element of the new added conditional nodes is determinable in the instance of new schema, formalized as:
V.V, (ceW.CrceW.CAl(c,d,read) e W' E;) =
=3, .y r (StateOf, (t) = COMPLETED A (t,d, write) e W'.E,)ne <, 1) (MD—ii)

Oppositely, the virtual enactment constructed in the migration will be ambiguous when meeting a conditional
node not satisfying the condition (MD—ii).

Similarly as the MSC, the sufficiency of the MDC can be proven by constructing a virtual enactment. Limited
by the text space, further detail is omitted here.

2.4 Instance migration algorithm

We apply the MSC and MDC to the implementation of our approach, described as the following algorithm:

Algorithm: Instance Migration

Description: A dynamic change of schema JSy=(W,W") arises when the running instance /; of the schema W
holds the state Sy. The instance need migrate to /- based on the new schema W7'.

Procedure:

© hEE

AT hupy/ www. jos. org. cn

BAXRE F—HATV REZEMNGTARAREGEH 7% 761

1. Initialize some elements of /;» and temporary data of the algorithm:
1.1 Initialize Iy~ : Ve r - StateOf . (1) «<— NOT _ ACTIVATE ; Iyy.Sy. V.~ ¢
Y e cur - StateOfy,. (v) <= PENDING ;
1.2 Migrate the data elements of Iy to Iy.: Iy.Sy.D, ~1y.Sy.D,;
1.3 V,(tel, .S, T, nt e W'T):StateOf,,.(t) < HOLDING, H < H U {t};
1.4 Create a temporary task set:
if (ClassOf(Jyy.Sy. V.[i])=TASK) then M~1y.Sy.V.[i], i = 0, Length(Zy.Sy. V) ';
2. Mark the states of some tasks in I~ according to M, Ve
if (¢€ W' T) then StateOfy«() <~ COMPLETED; else migration not allowable, algorithm halts.
3. Reach the new state Sy in term of the rules of virtual enactment:
3.1 Select the node u € U from W', which satisfies: StateOfy(u)=COMPLETED or PENDING,
if such node doesn’t exist, go to 4;
3.2 if (ClassOf(u)=CONDITION) then
Y ((u,d,read) € W'.V,) : Mark(d,read,); decide a routing; go to 3.1 to continue scheduling;

3.3 if 3y (u.d,write) € W'.V,/\Marked(d,read,))), then migration not allowable, algorithm halts.

3.4 YV (t'in Iy V. Auit) if (4 <. '), then migration not allowable, algorithm halts.

3.5 AddTail(Zy.V., u), M—M\{u}, go to 3.1 to continue scheduling;

4. if (M#*J) then migration not allowable, algorithm halts.

5. Vier: if (StateOfy (predy(¢)) = COMPLETED) then

StateOfy(t) <~ RUNNING; LSy To~ Iy .Sy T, {t};

else StateOf y(t)<~NOT ACTIVATE,

6. Migration successful, end of algorithm.

The implementation of the algorithm is driven from the proof in 2.3. In other words, we construct a virtual
enactment, where the MSC and MDC can be verified in turn. In more detail, step 2 checks the MS—i; the enactment
of new schema W’ with the selection in step 3.1 follows the MS—ii implicitly, because every preceding node ¢ of u
in IV, must satisfy: StateOfy(£)=COMPLETED; in the step 3.3, the MD—ii is checked implicitly, i.e., we can not

find a data element written by u, which has been marked; since in step 3.4 ¢ <ot SO if (4 <) the MD—i is not

satisfied and the algorithm should halt; in the step 4, (M7= Q) shows that the virtual enactment can’t cover all the
nodes with COMPLETED state in [and the MS—iii is not satisfied.

3 Related Work

Similar as our work, some approaches are proposed in Refs.[4~8] to solve the problems within workflow
evolution. In detail, these approaches include: some modification primitives for workflow evolution in Refs.[4,5], an
approach based on generic workflow models in Ref.[6], a formal representation of dynamic change based on Petri-Nets
in Ref.[8] and a few correctness conditions used to adapt the task model of instance in Refs.[7,8], and so on. compared
with these works, our approach has some advantages:

1) Since it's familiar for the tasks in a workflow to interact with each other through some data, our approach
supports not only the change of structure/control flow, but also the change of data flow. It’s more practical in
applications than the methods only considering the structural change, such as Refs.[6,7].

2) Our approach supports generic dynamic changes of workflow, without putting special limitation on the
workflow evolution. Some typical structural changes involved in other articles such as: four inheritance types PT, PP,
PJ, PJ3 in Ref.[6], upsizing and downsizing property of dynamic change in Ref.[7], specific how the changes look like.

However, our approach doesn’t limit the semantics of changes. As a result, it’s general and independent to the concrete

© e

http:/ www. jos. org. cn

762 Journal of Software #AFF IR 2003,14(4)

application.

3) Essentially, we regard dynamic change as direct transformation of schema and instance state. Instance migration
in our work is based on neither the modification primitives in Refs.[4,5], nor some transitional model/state like [6]. To
some extent, the dynamic change shown by us is similar to the atomic transaction in database. Regarding a single
operation as a unit of change or introducing some transitional state will easily lead to loss of instance state in migration
and even failure of migration.

4) Our approach has broad applicability to kinds of changes. Contrastively, the conditions in Ref.[8] are too strict
to evolve some migratable instances; and it’s possible for inconsistent migration to be permissive in Ref.[7], because the
influence of data flow and tasks on workflow enactment is ignored.

5) The rules and conditions we propose are easy to be validated and implemented. For instance, the conditions of
migration in Refs.[4,7] are difficult to be validated; and although the minimal representative defined in Ref.[6] is helpful
to transfer the instance state in an idea scenario, it's quite difficult for any workflow to find a proper minimal
representative.

19 i5 also

On the other hand, the self-learning algorithm for automatic process definition generation in Wowww!
used to improve the flexibility of online process, and the workflow model is alterable. However, the essence and focus of
the work are different from ours. The process definitions (i.e., workflow schema in this paper) in Wowww! evolve
gradually and become clear in the runtime by gathering information from users. Differently, our approach is used to
migrate a running instance from an old schema to a new one, and the schema is always certain before instantiation.

As an adjunctive application of the ROK (Reflective Object Knowledge) model, an approach applied to workflow
model and instance evolution is shown in Ref.[3]. Some operations on meta-model of process and some meta-processes
made of the operations are introduced in the approach. To some extent it is similar to the modification primitives and

their combination. Some issues such as correctness, migration conditions are not involved in the work.
4 Conclusions

On the basis of the formal definitions of the extended-task-structures based workflow model, we present a
complete approach to tackle the typical problem in the context of workflow evolution, i.e., the dynamic migration of
workflow instance. Our methodology consists of a few state transformation rules, several migratable conditions of
instance and an instance migration algorithm. By comparing with some related works, we illustrate the advantages
of our approach on applicability, generality, correctness and practicability. The formal definitions and algorithm in
the paper have been successfully applied to a flexible WEMS we developed, which supports dynamic changes of
workflow. Some issues ignored in the paper, such as: the compensating tasks, the cyclic structure, and the partition

of change regions, are our current research focus.

References:

[11 Amit PS, W.M.P. van der Aalst, ef al. Processes driving the networked economy. IEEE Concurrency, 1999,7(3):18~31.

[2] Shi ML, Yang GX, Xiang Y, Wu SG. WIMS: workflow management system. Chinese Journal of Computers, 1999,22(3):325~334
(in Chinese with English abstract).

[3] David Edmond, A.H.M. ter Hofstede. A reflective infrastructure for workflow adaptability. Data and Knowledge Engineering, 2000,
34(3):271~304.

[4] Casati F, Ceri S, et al. Workflow evolution. Data and Knowledge Engineering, 1998,24(3):211~238.

[5] Reichert M, Dadam P. ADEPTflex: supporting dynamic changes of workflows without loosing control. Journal of Intelligent
Information Systems, 1998,10(2):93~129.

© rhiEBRER

AT hupy/ www. jos. org. cn

BAXRE F—HATV REZEMNGTARAREGEH 7% 763

[6] W.M.P. van der Aalst. How to handle dynamic change and capture management information. In: Proceedings of the 4th IFCIS
International Conference on Cooperative Information Systems (CoopIS99). Edinburgh, Scotland, IEEE Computer Science Press,
1999

[7] Ellis C, Keddara K, Rozenberg G. Dynamic change within workflow systems. In: Comstock N, Ellis C, eds. Proceedings of the
Conference on Organizational Computing Systems. Milpitas, CA: ACM SIGOIS, ACM Press, 1995. 10~21.

[8] Mathias W. Formal foundation and conceptual design of dynamic adaptations in a workflow management system. In: Sprague ed.
Proceedings of the 34th Hawaii International Conference on System Sciences (HICSS-34). Maui, Hawaii: IEEE Computer Society,
2001.

[97 W.M.P. van der Aalst, A.H.M. ter Hofstede. Verification of workflow task structures: a Petri-net-based approach. Information
System, 2000,25(1):43~69.

[10] Shi ML, Yang GX, Xiang Y. A Web-based workflow management system. Journal of Software, 1999,10(11):1148~1155 (in

Chinese with English abstract).

Mt o 3L S % 3K -
(2] SR BIEAS, 0 09405 0) WEMS: TARVLAT B SR 403 ST L4, 1999,22(3):325~334.
[10] S, b s, i 53— R T~ Weeb) T fR U0 20 AR GE 402 41£,1999,10(11):1148~1155.

Appendix:

Some definitions, operators and functions directly used in the text.

1. A function ClassOf: V— {TASK, CONDITION, SYCHRONIZER} judging the type of a node.

2. Four preceding and succeeding functions of a node: PREDy(y), ye?, a set of all directly preceding nodes
of a synchronizer y; SUCCy(x), xe TU Y, a set of all directly succeeding nodes of a node x; succ(c), ceC,
the directly runtime succeeding node of a conditional node c; pred(?), te U, the directly runtime preceding
node of an executable node ¢.

3. Path in workflow: a static path 5 = (e, e,,...,e,) in W, where: e;=(vy;,vx;), v, is the end point of e, and
Vi, is the starting point of ;. ; the dynamic path 3 = (e,y,-5e,) in 7y, an additional condition is that if
ClassOf(v))=CONDITION then v;= succc(v;). A path p from v; to v, can be denoted as:y, —£— v, .

4. §,—258),,0=vy,.v,: there is a sequence ¢ of scheduled nodes which leads from the state Sy to the state
Sw, s, ——s,, : the state Sy is reachable from the state Sy.

5. A static partial order V.,<z) is defined as: " iff there is a static path p where ¢ —2 ¢, .
Obviously the partial order defines an irreflexive and transitive binary relation < Similarly we can
define the dynamic partial order (y, <N

6. Generally, if two executable nodes v,v, € U in W satisty the following condition:
3,0, (v,,d, write) € E, A((v,,d,write) € E, v (v,,d,read) € E,)) » then we call that v, and v, are

conflicting to data d, written v;{,v,. If unnecessarily, we can omit d, written v;v,.

© rhiEBRER

AT hupy/ www. jos. org. cn

	Workflow Schema and Instance
	Instance Migration
	Dynamic change
	State transformation rules
	Migratable conditions of instance
	Migratable state conditions (MSC)
	Migratable data conditions (MDC)

	Instance migration algorithm

	Related Work
	Conclusions

