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Abstract: Magnetic Resonance Image (MRI) segmentation plays a major role in the tissue quantitative analysis
which benefits the early treatment of neurological diseases. In this paper, a new approach to MRI segmentation
based on hierarchical Markov random field (MRF) model is proposed: In higher-level MRF, a new mixture model is
presented to describe the label image, that is, the interior of region is modeled by homogenous and isotropic MRF
while the boundary is modeled by inhomogeneous and anisotropic MRF. So the orientation is incorporated into the
boundary information and the characteristic of label image can be more accurately represented. In lower-level MRF,
the different Gauss texture is filled in each region to describe pixel image. Then the segmentation problem is
formulated as Maximum a Posterior Probability (MAP) estimation rule. A histogram based DAEM algorithm is used,
which is able to find the global optima of the standard finite normal mixture (SFNM) parameters. Based on the
meaning of prior MRF parameter, an approximate method is proposed to simplify the estimation of those parameters.

Experiments on the pathological MRI show that our approach can achieve better results.
Key words: hierarchical Markov random field; SFNM; image segmentation; MRI; MAP

Image segmentation is a very important tool in clinical application. It is employed in image guided monitoring,
computer intervention. Pathological studies show that many neurological diseases are accompanied by subtle
abnormal changes in brain tissues. Quantitative analysis of MRI does great help on early treatment!' 1.

In hierarchical MRF, the higher level MRF determines the prior of label image for the region formation
process, while the lower level MRF contributes to the conditional probability of the pixel image in each regionl®.
Here we propose a new mixture model to describe the higher-level label image. The formation of label image is
composed of two components: (1) A homogenous and isotropic MRF is used to characterize the interior of region
and (2) an inhomogeneous and anisotropic MRF is used to characterize the boundary. While in the lower-level MRF,

each region is filled with the different Gauss texture to form the pixel image. According to Maximum a Posterior
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Probability (MAP) rule, the parameters of the two levels could be estimated respectively and iteratively. Compared

with the previous researches®>"#

1) A new mixture MRF model is proposed to establish the label image. In contrast to the previous

, our work have the following contributions:

models!"**#], the four prior clique parameters {8, 2, B, B} associated with pixel i are taken into account on
the boundary. So orientation is considered and the characteristic of label image can be more accurately represented.
2) The estimation of SFNM parameters in Ref.[1] was based on EM algorithm, which may trap into local

optima and is sensitive to the initial value. Here we derive a histogram based DAEM algorithm to find global
optima.

3) Based on the actual meaning, an approximate but simple method is proposed to estimate the MRF prior
parameters. Then according to Iterated Conditional Modes (ICM) algorithm, the label image is updated sequentially.

Experiments on a pathological MRI showed our approach achieves better results than previous research. The
performance evaluation is done via AIC criteria and the post-global relative entropy (GRE).

The rest of the paper is organized as follows. In Section 1, the model is described. In Section 2, the parameter
estimation method is discussed in detail. In Section 3, the experiment results are compared with previous work. In

Section 4, the future work is discussed.

1 Image Model

1.1 Lower-Lever MRF

Let S denote a 2-dimensional integer lattice and represent points in S by i=(,7;)€S. The image X is a random
field defined on S. Based on hierarchical MRF, we suppose the pixel gray in the 4-th region obey a normal
distribution of mean g4 and variance ozk(k=1,2,...,K). Then we can represent the histogram of the image as a

standard finite normal mixture (SFNM):

(

} ch gl .07, 0

k k=1

f(x)= ZCA \/—Uk exp{-

where ¢ is the mixture ratio of the k-th Gauss kernel and satisfies
K
dep=1, (0<¢, <), 2)
k=1

K is the adaptive number of the class which will be determined by AIC criteria.

1.2 Higher-Lever MRF
The label image is denoted as /={/;| ieS}, let /={1,2,...,K} is a countable label set, where /;e /" is the label

associated with the pixel i. To characterize the prior knowledge of /, we assume that / is homogenous and isotropic
MREF in the interior of the region while it is inhomogeneous and anisotropic MRF on the boundary, which is
different from the previous MRF model**%. Using the equivalence between MRF and the Gibbs distribution, the
joint probability of / has the following form:

P() :%e’u(” , (3)

where Z :J./ rNe’U(”dl is the partition function and N is the pixel number of the image. On the 8-neighbourhood

(1) e

system, the pair-site cliques have four types, denoting as ¢ ,c®. Accordingly we define the four direction

neighbor system as: N={ j |(i,/))ec}, (t=1,...,4). Then we can define the energy function as:
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U(Z):Z{Z Zﬂim'[(livl/)jl (4)

ieS| =1 (i, j)ec”)

-1 if [, =1,
](li’l/)_{ S (5)

0 else

Where S (t=1,...,4) is the Markov parameter describing the constraint at the point i. If 7 is the interior point of

the region, B = g = g% = p*; while on the boundary, the four kinds of B at pixel i are not always the

same.

2 Method

Based on (1)~(5), the parameters are estimated via MAP rule. Let g=(8%,82,8%,8%),0=(u,0%,¢c),
where x,0%,c are K-dimentional vectors. Then we should estimate the following parameter vector {/, 3,6} .
Suppose that the prior knowledge of 4, £ is uniform, using Bayes law, we get

P(L,0,p|X) < P(1|X,0,5)-P(X|0,5)-P(0)-P(B) < P(L|X,[) P(X|0). (6)
The estimation for the parameters is defined as
(1,0, ) = argmax {P(I | X, ) P(X | 0)} . )

If the two product items P(/ |X, f) and P(X |#) are maximized respectively, then (7) is maximized. So

A

0 =argmax(P(X | 9)), 8)
f =argmax(P(l| X. ). ©)
? = arg max(P(/ | X,%)) . (10)

The estimation should be updated iteratively until convergence.
To solve (8)~(10), & is estimated using histogram based DAEM algorithm. £ is estimated using an
approximate method. The update of / is by ICM algorithm. The details are discussed as follows.

1.3 Thehistogram based DAEM algorithm for estimation of &

One general method to solve (8) is the EM algorithm, but it could only find the local optima. To improve the
performance, we use a deterministic annealing EM (DAEM) algorithm for estimation, where a temperature
parameter is introduced to control the annealing process and thereby the global optima could be tracked during the
gradually cooling process.

We introduce a hidden variant Y firstly. Let Y=[y,.] (p=1,2,...,L; k=1,2,...,K), where y,; denotes the probability
of the gray level p belonging to the k-th class, L is the number of gray levels. Then maximization of (8) could be

rewritten as g =argmax(log P(X | 0)) . Let

-G(NAY = [ G(Y)-logP(X,Y |6)-dY - [ G(Y)-1ogG(Y)- dyiJ(G(Y),a),

L(X|6)~logP(X| 0)=log| P(X.Y| 0)-dY:10gJ‘%Y|9)

where G(Y) is a distribution of Y. According to variational method: d/z(VGJ,é'G):O regardless of G, we
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could derive that G(Y)=P(X,Y |0)/'[P(X,Y |6)dY . In DAEM algorithm, a temperature parameter 7 is

introduced, then we could get’”: G_(Y)=[P(X,Y| 9)]I/J.[P(X,Y| NH'dY . If 7 —> 0 the distribution of G,(Y)is

uniform. When 7 increases G,(Y) changes from uniform to its posterior distribution when z=1 G, (Y)
become the original posterior distribution G(¥) as in EM!'". During this cooling process we could track the global
optima. Then the DAEM algorithm is expressed as:
In E-step, the expectation is
[P(X,Y 0]
[iPex,y |6 dy

0(616") = E4{log P(X,Y |6)| X,0"} = [[log P(X,Y | 6)]

In M-step , the maximization is “*" = argmax Q(6|6") . The DAEM based histogram algorithm is derived as
4

follows:
Dt=0,setz” =7, (0<z<1)and8?;

2) Iterate the following EM step until convergence

K
E-step: Y =le” - glu, | w0 [ Y le - gu, | 1" o) .
k=1
L
M-step: " =Y by (u,)/N
p=1
" L L )
wt =3y -hx(up)-up/ZY;,f chy(u,), (11)
p=1 p=1

L L
2 =S YO by (), — T / SO by ().
p=1

p=1

3) let t=t+1, increasing 7 : 7" =7 +cl*exp(—c2* AE)

4)If(r =1 and ||V9||2 < &) stop, else go 2))

1 ifa=b
where hX(uP):Zcount(x[,up), (r=1,2,...,.L), count(a,b):{o la . U, is the gray value of the p-th level.
else

ieS

(0

7 should ensure Q(@]60®) is a convex function and 7® ~0.1 may be enough; 6® could be set by random

initialization or clustering method. ¢, ¢, are constants which control the annealing schedule.
1.4 Using an approximate method to estimate g

The accurate estimation of [ should always use sampling techniques, but it is very complex and time
consuming. For simplicity, we propose an approximate method to estimate 5. We know that on the boundary A"
describes the direction effect at pixel i, considering the /; inclines to attribute to the class of which the pixel gray

value of N{” are closer to that of pixel i. So we express 3 by
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B =af(comp(x,.x\")+17) . (12)
0, ifallthe/,(j e N, t=1,...,4) are the same
comp(x,,x") =9 x —x® ,
/ ﬁ)z, else
g

lye, iy

/'eN,(’)

where a, 7] are const. Note that « is the factor which control the effect of MRF prior knowledge in the posterior
energy.

15 Updating/using ICM

Solving (10), we should derive the posterior energy of U(/ | X) firstly. According to Gibbs distribution and

Bayes law:
P(X |)=e VM /7 oce VD,
(X1 /2, 1%
Pl X)= e’U”'X’/Z2 oc e VN
P(L|X)=P(X |1)- P())/ p(X) = P(X |1)- P(]). (14)
substitute (3), (13) into (14) , we could derive that
Ul X)=UX|D+U()+const=—InP(X |)+U(l)+ const —InZ, . (15)
Note that Z, is a normalized constant and those constant values could be ignored in the minimization of (15).
so we let
vl xX)y=uX|h+u(), (16)
from formula (1) , we can derive that
K
PX | =TTTTPC; | 001", (17)
ieS k=1
1 if I, =k N
where g(/,, k) = 0 | . Moreover, U(l|X)= ZU(Z; |l ,X). Therefore,
else = '

(x; =

2 4
Tﬁlk)]-q(li,kﬂz > B I . (18)

20} =1 jeN{")

K
1
U, |1y, X) = Z[Eln(a,f) +
k=1
Maximize P(I | X) P(/| X) is equivalent to minimize (16). We adopt iterated conditional modes (ICM) algorithm to
update /; sequentially via minimize (18)!""). It yields
Aln+l)

I =argmin{U(l, | 1], X)} . (19)

The fine segmentation is implemented by interactively updating of / and S using (12), (18) and (19).

3 Experiment

The MRI used in the experiments is from a stroke patient as shown in Fig.1. Two experiments are done in this
paper. (1) The comparison of DAEM algorithm and EM algorithm in estimation of SFNM parameter. (2) The

comparison of the results of model 1 and model 2 in realization of fine segmentation.
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Model 1: higher-lever MRF using mixture MRF we proposed.
Model 2: higher-lever MRF using inhomogeneous MRF described in Ref.[1].

In experiment (1), 6 is set by random initialization and 7® =0.59, ¢, =0.03, ¢, =0.1 in DAEM. The

information theoretic criteria AIC can be used to evaluate the optimal solution via minimize A/C(K):

AIC(K) = ~210g(P(X |1,0u1)) + 2K , (20)

where éML is the parameter estimated using DAEM or EM algorithm, P(X |/,0.) 1is the likelihood function. K is

the optimal class number in segmentation. The AIC curves from EM and DAEM algorithm are shown in Fig.2, from

which we can observe two facts:
(1) The DAEM algorithm could obtain bigger and more stable likelihood values than that of EM algorithm. So,

DAEM is better than EM in the sense of ML estimation.
(2) The optimal class number K is that who minimizes A/C(K). From Fig.2, we could get the optimal class

number in segmentation is K =8 .

43
Lt i i H i H i
-

Fig.1 The original MRI of stroke Fig.2 AIC plot from DAEM and EM algorithm

The initial segmentation using EM and DAEM are shown in Figs.3 and 4 respectively. Comparing with Fig.3,
the boundary and the focus area on the left ventricle is strengthened in Fig.4. We can see clearly that using DAEM

is more robust than that of using EM.
In experiment (2), we seta=0.1, 7=0.5. Figures 5 and 6 are the fine segmentation using our model and

model described in Ref.[1] respectively. From the segmented image, we can see that our model has advantages of

less misclassification and characterize the focus area more clearly.

Fig.3 Fig.4 Fig.5 Fig.6

We use the post global relative entropy (GRE) criterion to measure the quality of the segmentation with the
consideration as follows: (i) it is an objective criterion and independent of the manual segmentation reference. (ii)

Based on our model, the pixel image is modeled by the SFNM, so if a segmentation method is better, its post SEFNM
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distribution fj(x) should be closer to its real SFNM than other method. Since the DAEM finds the unbiased
estimation fi(x) to the image histogram and we could believe it is the real SFNM. (iii) The post-GRE value could be

used to measure the deviation degree between two probability distributions fy (x) and f; (x).
Let fy(x) denote the ML estimation of SFNM using DAEM, the parameters of fy(x) are éML =(4,67,¢) . After

fine segmentation using ICM, the SFNM parameters are estimated again using sample average method, let f; (x)

denote the post segmentation SFNM, whose parameters are @ = (1,0°,c) . Then the post-GRE value is defined

by: D(fy | /) =D fy(x)- log% , where x is the set of gray values.

xey i (x

The post-GRE segmentation criterion states that the relative entropy between the ML estimate of the SFNM and
the SFNM obtained from the fine segmented image is minimal if the image components are correctly segmented.
The parameter values of a particular tissue type in the estimated histogram are most likely to be equal to the
parameter values of the corresponding tissue type in the fine segmented region if the pixel images are properly
classified. This correspondence is lost in the case of misclassificationt''?!.

So, the smaller the D(f, || f,) value is, the better the segmentation will be. The closer are the two groups of
parameters in Table I, the better the segmentation is. The parameters of fy and f; in our approach are compared in
Table I which show that they are close enough. The comparison of GRE values from different models is shown in
Table II, from which we can see that our model does better segmentation in the sense of less misclassification for its
smaller D(f, || f,) than the model in Ref.[1].

Table1l Real and estimated parameter values for the MRI in Fig.1 Table2 GRE value from different approach

k c/2 ,u/;l a/oA- Model D)
1 0.3685/0.4286 6.2400/6.5688 3.0904/3.2217 Model(1) 0.0088096
2 0.1951/0.1432 17.5285/19.8315 7.7645/4.5155 Model(2) 0.0098063
3 0.1301/0.1266 44.2206/46.5397 18.1094/12.8614

4 0.1233/0.1031 116.3619/111.8249 34.8634/22.7968

5 0.0487/0.0531 182.7046/169.8883 22.2156/9.8605

6 0.0178/0.0259 240.7434/239.4927 6.6889/6.1829

7 0.0660/0.0718 218.0995/217.9023 9.6929/6.3589

8 0.0504/0.0478 197.0524/197.1081 18.1775/ 5.9689

We should emphasis that although we have done experiments on the brain MRI, our algorithm could be applied

to other MRI segmentation cases.
4 Conclusion and Future Directions

In this paper, a hierarchical MRF model is used to characterize MRI. By using a newly presented mixture MRF
model as its higher-level model, orientation is incorporated into the segmentation process. For the lower-level
model, the DAEM algorithm is used to find the global optima of the SFNM parameters that avoids trapping into
local optimal as compared with EM algorithm. Considering the meaning of MRF prior parameter in our model, we
propose an approximate method to estimate £ . The performance of the segmentation is evaluated via AIC criteria
and the post-global relative entropy (GRE). The experiments show that our approach is capable of segmenting the
tissue more accurately and clearly, thus facilitate further clinical analysis and diagnosis.

MRI mainly provides the anatomic information. A prospective direction is to implement segmentation via the fusion
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of functional and anatomic information. We will investigate this issue in our future work.
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