
 Vol.13, No.8 ©2002 Journal of Software 软 件 学 报 1000-9825/2002/13(08)1374-08

A Flexible and Formalized Process Modeling Language 

CHEN Cheng1, SHEN Bei-jun1,2, GU Yu-qing1
1(Institute of Software, The Chinese Academy of Sciences, Beijing 100080, China);
2(Department of Computer Science, East China University of Science and Technology, Shanghai 200237, China)
E-mail: chen_goodwin@yahoo.com
Received July 18, 2001; accepted January 14, 2002

Abstract: For reaching the requirement of process domain, a flexible and formalized process modeling
language FLEX is proposed to support semantics richness, easy of use, flexibility, scalability, reuse, and distribution,
while it is analyzable, executable, and evolutive. Especially, the language not only can provide nonexperts high
level representation for easy of use, but also can allow users to define and reuse process notations at various
granularities to extend the representation. So FLEX can support various levels and requirements of process
modeling.
Key words: software process; process modeling; object oriented; pattern; PSEE

Software process is all the real-world elements involved in the development and maintenance of a software
product, i.e. resources, activities, artifacts and organization[1]. A formalized process model should be specified to
support Process-centered Software Engineering Environment (PSEE) or Workflow Management System (WfMS).
Through investigating many process modeling languages (PMLs), focusing on second generation PMLs[2] proposed
since 1996, we found that PML should support semantics richness, easy of use, flexibility, scalability, reuse, and
distribution, while it should be analyzable, executable, and evolutive.

It’s obvious that current PMLs and their support systems can’t reach those requirements. Most of PMLs[2~6] can
only specify and execute process model at low level abstraction, i.e. petri nets, rule-based formalism, and procedure
languages. Although some of them, such as JIL[2], SPADE[3], MARVEL[4], use graphical representation to make
process model more comprehensible, the granularity of process model is superfine to impede understanding and
reuse. Thus, a high level PML is needed, which is intuitive enough for nonexperts to specify problem domain.
Object-oriented modeling approach[7,8] seems to be suitable for the requirement, because it provides uniform and
powerful representation capabilities for the different aspects of a process since they rely on a natural way of
identifying and encapsulating existing entities. But it has disadvantages that it hasn’t definite executable semantics
and no global functional and behavior view of process model exists. In recent years, APEL[9] and MOKASSIN[10, 11]
try to provide users high level formalism, while supporting process execution by compiling the graphical
representation into executable formalism, but their translators are pre-defined. For more flexibility, a PML should
support the user-adaptable informal representation and the approach to transform gradually an informal model into a

 Supported by the Innovation Foundation of Institute of Software, The Chinese Academy of Sciences (ISCAS) under Grant
No.CX2K5415 (中国科学院软件研究所创新基金)

CHEN Cheng was born in 1978. He is a Ph.D. candidate at ISCAS. He received his B.S. degree in computer science from USTC in
1997. His research interests are software engineering, software process and software architecture. SHEN Bei-jun was born in 1969. She is
a Ph.D. candidate at ISCAS, and a lecturer in East China University of Science and Technology. Her research interests are software
engineering, software process, software tools and enterprise network computing. GU Yu-qing was born in 1940. He is a professor and
doctoral supervisor at ISCAS. His current research areas include software engineering.

 陈诚 等:一个柔性的形式化过程建模语言 1375

formal one[9], but none of existing PMLs can reach the requirement.
We propose a process modeling language FLEX that can support all features mentioned above. Based on

object-oriented, rule-based and constraint-based techniques, FLEX provides an abstraction mechanism that can not
only provide nonexperts high level representation for easy of use, but also allow users to specify process model at
different granularities for both semantics richness and flexibility. Typically, User can also reuse existing process
notations at different abstraction levels, based on their knowledge about the semantics, to construct higher level
notations to extend its expressive power. Only experts need to cope with lowest level representation. Moreover, the
formalized process model in FLEX can be analyzed for keeping the consistency, and can be executed and evolved in
FLEX support system.

In this paper, we focus on introducing the specification method of FLEX. The approach for analysis and
evolution will be mentioned in forthcoming papers. In Section 1, we identify architecture and main features of
FLEX support system. Section 2 briefs the executable and analyzable sub-language FLEX/BM. Section 3 introduces
the abstraction mechanism with the explanation of how to construct process elements, control flow, data flow, and
etc. In Section 4, we assess our approach and give a conclusion.

1 Architecture and Features of FLEX Support System

The language FLEX has two
representations, one is the pre-defined
high level graphical representation
FLEX/PL, and the other is the executable
and analyzable representation FLEX/BM.
It shows the architecture of its support
system that consists of graphical editor of
FLEX/PL, abstraction mechanism for
user-defined notations, a FLEX language
transformer, a process analyzer, a process
interpreter, a process engine, a process
monitor, a process controller, and a
process evolution manager in Fig.1.

FLEX/BM

FLEX/PL
User-Defined notations

Enaction Model

Controller

Evolution

Monitior

Process
enaction

state

Analyzer DeployInterpreter

Transformer
Abstraction
mechanism

Process
engine

FLEX support system can meet the following goals
z semantics richness, FLEX/BM is an executable lan
z easy of use, FLEX/PL provides high level represen

its elements can be refined step by step into hier
z flexibility, scalability and reuse, particular abstrac

the basis of FLEX/BM to extend FLEX/PL and t
z distribution, the basic objects communicate with e

support of passing messages and enable the distr
z analyzable, on the basis of finite state verifica

properties of a process model in the form of FLE
z evolutive, FLEX support system not only can evolv

2 Overview of FLEX/BM

In FLEX/BM, a process model can be regarded as

Fig.1 Architecture of FLEX support system

 for supporting variable process scenarios.
guage, which can specify process model with fine details,
tation which suits to nonexperts, and the process model and
archy structure,
tion mechanism of FLEX enables user-defined notations on
o reuse process fragments,
ach other by message passing, process engine provides the
ibuted process model,
tion (FSV)[12,13], the consistency, no deadlock, and other
X/BM can be analyzed,
e process models, but also can evolve itself.

components that may execute in concurrent way, with some

 1376 Journal of Software 软件学报 2002,13(8)

patterns that constraint the behavior of the process model. The component, i.e., object encapsulates some
user-defined data and provides some operations. An object can not access other objects directly, can but
communicate with other objects by message-passing mechanism. Patterns specify the needful properties of
operations’ occurring order while executing the process model, so we call it as pattern constraint later. The
execution rule of the process model in FLEX/BM is as follows: while an object receives an event, it executes the
corresponding operation if the operation doesn’t conflict with all pattern constraints of the process model, otherwise
the operation should be rejected.

2.1 Object

Like common object-oriented systems, FLEX/BM has some built-in objects, such as String, Numeral, Boolean,
and Set. User can construct objects by three built-in relations: aggregation, generalization, and association.

Both event and condition can trigger an operation of object. Commonly, it can be specified as an ECA rule[11]
in the form of “ON event IF condition DO action”, which shows that an action should be performed if the specified
condition is satisfied while an event occurs. FLEX/BM prescribes the operations in one object are serialized.
Namely, in one object, only one operation can be performed at any time, and events occurring while an operation is
executing will be performed after the operation is finished. It makes the semantics of those operations in concurrent
objects can be characterized by interleaving.

2.2 Pattern constraint

The operation sequence while executing a process model should satisfy all of the pattern constraints in the
process model, that is a regular expression whose operands are operations of process element and operators can be
subsequence (;), concurrence (||), exclusive OR (⊕), NOT (¬), optional ([]), iterative (+), and optional iteration (*).
With the quantifier ∀ and ∃, we can specify the pattern constraint on the operations of a kind of objects. Our pattern
constraint derives from the idea of the operation pattern in OBM[14], and provides more powerful and intuitive
representation. Firstly, there are only a part of operations in one pattern constraint, so any operations that haven’t
been mentioned can execute in any order. In addition, except for specifying pattern constraints on the operations of
an object, FLEX/BM allows to specify pattern constraints on the operations of multiple objects.

3 Abstraction Mechanism of FLEX

FLEX support to construct notations for specifying process model to extend itself with the abstraction
mechanism on the basis of FLEX/BM, so the high level representation FLEX/PL.

3.1 Common process elements in FLEX/PL

Although existing process modeling languages have various notations and formalisms, there are some
acknowledged process elements, such as activity, product, role, agent, and tool. In FLEX/PL these process elements
are pre-defined objects with definite semantics, and users can define new process elements by the built-in relations
in FLEX/BM. The graphical notations of those elements are shown in the following:

Generalization Aggregation Association Role Agent ToolActivity Product

Fig.2 Graphical notations of some process elements and relations

For example, the product object has two fundamental operations read and write, and two states initial and
submitted whose transitions are specified by state transition diagram. An example shows three user-defined

 陈诚 等:一个柔性的形式化过程建模语言 1377

products and their structures in the left section of following figure. There some files and documents constitute a
module, and documents are special products that should be reviewed to ensure their quality. So the module can be
specified as the aggregation of the file and the document. New state reviewed, operation review, and modified state
transition diagram are added to the specification of the document. The specification of products in the left section is
high level and intuitive, which is the abstraction of the FLEX/BM program in the right section, where the definition
of product object is omitted.

file IS product;
document IS product {
 state : (initial, submitted, reviewed);
 on read_event do read;
 on write_event if state = initial or state = submitted
do write;
 on review_event if state = submitted do review;
 review() { state = reviewed; }
}
module IS product CONSIST { file, document }

write

review

write

STD of document

initial

submitted
reviewed

Product

File

Module

Document

There are some operat
where the get and submit a
the product, others are ope
pattern constraint PATactivity

an activity should be starte
and resumed, and it can be
activity is suspended, only t

To the role object, we
agents who reach the skill r

3.2 Advanced control flow

On the view of ontolog
the specification of a proce
relations are the relations r
execution sequence of ope
manner using pattern const
will show the construction
and users can construct user

Firstly, an activity can
while it’s instantiated. Refe
periodic. In FLEX, the inst
activity A should have th
skipped. A no-reactive acti
can be instantiated once a
[instantiate(A)]), which sho
more. A periodic activity A
an operation of timer that
periodically after executing

Activities in a process

Fig.3 An example for constructing products
ions in the activity object, that are start, get, submit, suspend, resume, commit and abort,
re operations getting and submitting a product by calling the read or write operation of
rations controlling the execution of activity. The behavior of them is restricted by such
 “start ; ((get* || submit*) ; (suspend ; resume)*)* ; (commit ⊕ abort)”. It implies that
d firstly, whereafter it can get or submit some products, meanwhile it may be suspended
 committed to finish normally, or be aborted to finish abnormally. While an enacting
he operation resume can be executed to continue the enaction.
focus on its skill requirement attribute, which is a set of skill type and degree. Only those
equirement of a role can be assigned with the responsibility of the role.

 specification method

y, the relations are more complex and important than the objects in a system. Therefore,
ss model should stress on the relations between process elements. The most important

elated to the control flow and the data flow. The control flow is the rules to restrain the
rations in process model. In FLEX/BM, the control flow can be specified in flexible
raint, because it supports to specify the execution order of operations in detail. Here we
rules of some pre-defined control flow notations in FLEX/PL on the basis of FLEX/BM,
-defined notations for specifying control flow in similar way.
 have different instantiation mark, which decides the possible behavior of the activity
rence to [1], instantiation mark of activity consists of optional, no reactive, serial, and
antiation properties of activities can be transformed into pattern constraints. An optional
e pattern constraint (instantiate(A))*, which shows that the optional activity can be
vity A should have the pattern constraint [instantiate(A)], which shows that the activity
t most. A serial activity A should have the pattern constraint ∀(i) (PATactivity(A(i));
ws that only after current instance of A is finished, the activity can be instantiated once
 should have the pattern constraint (PeriodTimer; instantiate(A))*, where PeriodTimer is
 executes periodically. The pattern constraint shows that the activity should execute
 the operation PeriodTimer.
 model will be executed concurrently if without any constraints. In most circumstance,

 1378 Journal of Software 软件学报 2002,13(8)

some constraints on the execution order of activities should be specified in order to reduce the indetermination of
the behavior of the process model. For example, there are some typical relations between two activities below that
decide the behavior of activity B based on the execution status of activity A, which can be transformed into pattern
constraint specifications:

Table 1 Relations between two activities and their pattern constraint

Relation Description Pattern constraint
finish-start B can start only after A is finished. (A.commit ; [B.start])*
start-start B can start only after A is started. (A.start ; [B.start])*

start-finish B can finish only after A is started. (A.start ; [B.commit])*
finish-finish B can finish only after A is finished. (A.commit ; [B.commit])*
after-expect After A is finished, B should be executed. (A.commit ; B.start)*

after-prohibit After A is finished, B can’t be executed. (A.commit ; ¬ B.start)*

A

while-prohibit

B

While A is executing, B can’t be executed. (A.start ; ¬ B.start ; (A.commit ⊕ A.abort))*

Obviously the relations between two activities can be readily extended to form the
relations among multiple activities to determine the execution sequence of activities. But
sometimes user needs to specify some activities to be non-concurrent, i.e., only one of
the activities can be executed at any time. In this situation, the execution sequence of
these activities isn’t determinate, and process performer can select and execute one of

them at one time.

non-concurrent
A1

An

For reaching the requirement, relation non-concurrent among activities is introduced, which can be
transformed into a pattern constraint PATnon-concurrent=∀(A,B|A,B∈S) (A while-prohibit B), where S is the set of those
non-concurrent activities {A1,...,An}. The pattern constraint shows that while executing any activity in S, another
activity can’t be executed. So the execution order of activities in S can only be serial, but the pattern constraint
doesn’t constrain the execution behavior of those activities, which are determined by the pattern constraints of each
activity itself.

3.3 Data flow specification method and collaboration mechanism

In process model, the input and output products of activities construct the data flow, and determine the
permissibility of the activity operates the products. Obviously, an activity can read and write its output products. In
FLEX/PL, an activity can access its input products in read only mode or write enable mode.

If an activity A can only read its input product P, a pattern constraint “¬ A.submit(P)” should be satisfied. On
the other hand, if a product P can be written by multiple activities A1,A2,…,An, a synchronization mechanism should
be used to keep the consistent version of the product. User can define version control mechanism, and there are two
pre-defined mechanisms in FLEX/PL. One is Multi-Version Concurrency Control (MVCC) Mechanism[15]. After a
product is changed by an activity, other activities should get the newest version of the product before attempting to
submit it. The mechanism can be presented in the following pattern constraint:

∀(A|A∈{A1,A2,…,An})(A.submit(P) after-expect((\A).get(P); [(\A).submit(P)]))
The other is check-in/check-out mechanism, where only the activity that checks out a product can check in (submit)
the product. If user chooses to use the check-in/check-out mechanism, the operations of activity to operate products
are changed to get (read), check-out (read), and check-in (write). These three operations satisfy the following
pattern constraint:

∀(A|A∈{A1,A2,…,An})(A.check-out(P) before-prohibit A.check-in(P)) and (A.check-out(P) after-prohibit (\A).check-out(P))

Product change control mechanism in the collaboration of multiple activities can also be described in pattern
constraints. If an input product of an activity is changed by other activities, the activity should get the current
version of the modified input product before it tries to submit some output product. The corresponding pattern

 陈诚 等:一个柔性的形式化过程建模语言 1379

constraint is “([P.write] ; A.get(P) ; ∀(o | o IS product) [A.submit(o)])*”, where P is an input product of A.

3.4 A simple process model example

Here we use FLEX representation to model a simple process to exemplify some benefits of our language in
Fig.4. It consists of three concurrent activities, which are design_step, coding_step and review, where the result of
executing activity design_step is design_document that should be went through by activity review. If the
design_document can’t reach the expected requirement, a feedback message that is a special product will be sent to
activity design_step for requiring a revision, otherwise a review_report will be submitted. Only after the
design_document has past the review, activity coding_step can proceed and generate source_code. Data flow,
control flow, and mechanism of product control and collaboration of the process model are implied in pre-defined
relations so that the process model looks concise and intuitionistic, and two explicit textual sentences are specified
for customizing the process model.

Fig.4 Main part of a simple process model example

review report.write
before-prohibit
coding step.start

feedback.write after-expect
design_step.submit(design_document)

Feedback

Sourc e
code

finish-start

Coding stepRequirement

Review
report

Design
document

Review

Design step

In this example, data flow relations in the process model imply the mechanism of product access and change
control, which can be transformed into some pattern constraints according to the abstraction mechanism,

4 Conclusion and Future Work

We propose a flexible and formalized process modeling language FLEX that bases on object-oriented,
rule-based and constraint-based techniques. FLEX and its support system can reach the requirements in process
domain, such as semantics richness, easy of use, flexibility, scalability, reuse, and distribution. Two sub-languages,
FLEX/PL and FLEX/BM, are proposed to different goals. FLEX/PL aims to be easy of use for non-experts, while
FLEX/BM aims to definite and rich semantics. In this paper, we focus on introducing the abstraction mechanism of
FLEX, which supports to define high level notations on the basis of FLEX/BM in order to glue the gap between the
notations at different abstraction levels. The features of FLEX/PL in detail are not involved in this paper, which can
be found in Ref.[16].

The most important advantage of the abstraction mechanism of FLEX is that it supports users (not only
experts) to customize the notations for special requirements in various granularities based on existing notations. And
the abstraction mechanism of FLEX supports to transform gradually the user-defined informal representation into a
formal FLEX/BM representation. In this paper, clearly there are specification methods at four different abstraction
levels at least.

(1) Implement level: The method at lowest abstraction level is the object specification in FLEX/BM that can
implement all functions of a process model needs, which is similar to the formalism of MOKASSIN that are based
on rule-based formalism. Only experts can cope with the representation of this level.

(2) Constraint level: The pattern constraint can specify the behavior of process model intuitively. In this level,

 1380 Journal of Software 软件学报 2002,13(8)

the properties, not the procedures, of process model are specified. Especially, the properties involving multiple
objects can be specified directly.

(3) Semi-nature level: For example, the temporal relations among operations can specify the temporal order of
operations in a way that is similar to natural language description, such as “after ... should ...”. Most of users can
readily understand it without different meanings.

(4) Graphical level: The graphical notations, both pre-defined and user-defined, is the high level notations that
can be readily understandable. Different organizations or users can customize their own graphical notations.

In contrast, APEL has rich expressive power by defining abundant graphical process notations, which cover
most of process elements, control flow, data flow, state diagram, concurrence, and collaboration. MOKASSIN pays
attention to the process modeling in workflow. It integrates the high level constructs of task graphs and the
flexibility of rule-based techniques into a coherent framework, hence can support the user-adaptable and flexible
process modeling. But, both APEL and MOKASSIN can only construct user-defined notations or customize process
model by specifying rules. The method is difficult to most of users because it involves too many details in process
model. In addition, the user-customized rules must influence other parts of the process model, so the rule-based
process model will become complex and uncontrollable. Hence, our approach with abstraction mechanism is more
flexible, intuitive, and easy to specify process model and to reuse existing process notations.

Acknowledgement Our work is on the basis of E-Process, which is a commercial web-based distributed PSEE
funded by SRA and ASTI. Here we would like to thank all members of E-Process project.

References:
[1] Derniame, J.C., Kaba, B.A., Wastell, D. Software Process: Principles, Methodology and Technology. Springer Verlag, 1999.

[2] Sutton, Jr., S.M., Osterweil, L.J. The design of a next-generation process language. In: Proceedings of the 6th European Conference

Held Jointly with the 5th ACM SIGSOFT Symposium on Software Engineering. Springer-Verlag, 1997. 142~158.

[3] Bandinelli, S., et al. SPADE: an environment for software process analysis, design, and enactment. In: Software Process Modeling

and Technology. Research Studies Press Ltd., 1994. 223~247.

[4] Kaiser, G.E. MARVEL 3.1: a multi-user software development environment. In: Proceedings of the International Symposium on

Logic Programming. Vancouver, Canada, 1993.

[5] Rombach, H.D. MVP-L: a language for process modeling in-the-large. Technical Report UMIACS-TR-91-96, University of

Maryland, 1991.

[6] Canals, G., et al. ALF: a framework for building process-centred software engineering environments. In: Software Process

Modeling and Technology. Research Studies Press Ltd., 1994. 153~185.

[7] Baldim, M., et al. Object oriented software process model design in E3. In: Software Process Modeling and Technology. Research

Studies Press Ltd., 1994. 279~290.

[8] Rumbaugh, J., Jacobson, I., Booch, G. The UML Reference Manual. Addison Wesley, 1999.

[9] Dami, S., et al. APEL: a graphical yet executable formalism for process modeling. In: Automated Software Engineering (ASE).

1997.

[10] Joeris, G., et al. Towards object-oriented modeling and enacting of processes. TZI-Report 07/98, Center for Computing

Technologies, University of Bremen, 1998.

[11] Joeris, G. et al. Towards flexible and high-level modeling and enacting of processes. In: Proceedings of the 11th International

Conference on Advanced Information Systems Engineering (CaiSE’99). 1999.

[12] Holzmann, G.J. The model checker SPIN. IEEE Transactions on Software Engineering, 1997,23(5):279~295.

[13] Cobleighm, J.M., et al. FLAVERS: a finite state verification technique for software systems. Technical Report, UM-CS-2001-017,

Department of Computer Science, University of Massachusetts, Amherst, MA 01003. 2001.

 陈诚 等:一个柔性的形式化过程建模语言 1381

[14] Sa, J., et al. OBM: a specification method for modeling organizational process. In: Proceedings of the Workshop on Constraint

Processing at CSAM’93. 1993.

[15] Multiversion Concurrency Control. 2002. http://www.postgresql.org/idocs/index.php?mvcc.html.

[16] Chen, Cheng, Shen, Bei-jun. Towards flexible and high-level process modeling language. In: Proceedings of the International

Symposium on Future Software Technology (ISFST). 2001. 136~141.

一个柔性的形式化过程建模语言

陈 诚 1, 沈备军 1,2, 顾毓清 1

1(中国科学院 软件研究所,北京 100080);
2(华东理工大学 计算机科学系,上海 200237)

摘要: 提出了一个柔性的形式化过程建模语言 FLEX.它具有丰富的语义、易用性、灵活性、可扩充性、可重用性
和分布性,是一个可分析、可执行、演化的过程建模语言.建模语言不仅提供了高度抽象的描述方法以便于一般用
户使用,还允许用户通过重用的方式自定义多种抽象级别的语言元素来扩充语言的描述能力.因此,FLEX 语言可以
支持不同层次和需求的过程建模.
关键词: 软件过程;过程建模;面向对象;模式;PSEE
中图法分类号: TP311 文献标识码: A

第 12届中国计算机学会网络与数据通信学术会议
征 文 通 知

为推动我国在此方向的研究，探讨计算机网络与数据通信技术的发展动态与趋势，促进我国科研人员在

此领域的交流与合作，中国计算机学会网络与数据通信专业委员会拟于 2002年 12月 2日~4日在武汉举办“第
12 届中国计算机学会网络与数据通信学术会议”。会议由华中师范大学计算机科学系承办，并将邀请该领域
的国际知名学者作专题特邀报告。为保证本次会议的学术质量，现向全国科技工作者公开征稿。征稿范围包

括计算机通讯网络理论与工程的各个方面。 本次会议的论文将结辑出版优秀论文将由计算机学会推荐给有关
核心期刊发表。
征文要求：
1.论文应是未公开发表过，一般不超过 6千字
2.全文电子邮件投稿，要求 Word2000兼容的电子文档，所有内容放于一个文件中
3.编排格式
 标题：居中，2号黑体, 作者：居中，4号仿宋, 作者地址：5号楷体
 摘要、关键词：5号楷体 正文：5号宋体，分节标题 4号
 参考文献：小 5号宋体
4.投稿地址：华中师范大计算机科学系 谭连生 教授收 (E-mail: L.Tan@ccnu.edu.cn)
重要日期：论文提交截止日期：2002年 8月 15日 论文接收通知日期：2002年 10月 1日

会议注册日期： 2002年 12月 2日
联系方式：
联系人： 谭连生教授, 电 话：027 87673277, 传 真：027 87876070, E-mail: L.Tan@ccnu.edu.cn
通信地址：湖北省武汉市华中师范大学计算机科学系, 邮 编：430079

http://www.postgresql.org/idocs/index.php?mvcc.html

	Architecture and Features of FLEX Support System
	Overview of FLEX/BM
	Object
	Pattern constraint

	Abstraction Mechanism of FLEX
	Common process elements in FLEX/PL
	Advanced control flow specification method
	Data flow specification method and collaboration mechanism
	A simple process model example

	Conclusion and Future Work

