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Abstract: For reaching the requirement of process domain, a flexible and formalized process modeling 
language FLEX is proposed to support semantics richness, easy of use, flexibility, scalability, reuse, and distribution, 
while it is analyzable, executable, and evolutive. Especially, the language not only can provide nonexperts high 
level representation for easy of use, but also can allow users to define and reuse process notations at various 
granularities to extend the representation. So FLEX can support various levels and requirements of process 
modeling. 
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Software process is all the real-world elements involved in the development and maintenance of a software 
product, i.e. resources, activities, artifacts and organization[1]. A formalized process model should be specified to 
support Process-centered Software Engineering Environment (PSEE) or Workflow Management System (WfMS). 
Through investigating many process modeling languages (PMLs), focusing on second generation PMLs[2] proposed 
since 1996, we found that PML should support semantics richness, easy of use, flexibility, scalability, reuse, and 
distribution, while it should be analyzable, executable, and evolutive. 

It’s obvious that current PMLs and their support systems can’t reach those requirements. Most of PMLs[2~6] can 
only specify and execute process model at low level abstraction, i.e. petri nets, rule-based formalism, and procedure 
languages. Although some of them, such as JIL[2], SPADE[3], MARVEL[4], use graphical representation to make 
process model more comprehensible, the granularity of process model is superfine to impede understanding and 
reuse. Thus, a high level PML is needed, which is intuitive enough for nonexperts to specify problem domain. 
Object-oriented modeling approach[7,8] seems to be suitable for the requirement, because it provides uniform and 
powerful representation capabilities for the different aspects of a process since they rely on a natural way of 
identifying and encapsulating existing entities. But it has disadvantages that it hasn’t definite executable semantics 
and no global functional and behavior view of process model exists. In recent years, APEL[9] and MOKASSIN[10, 11] 
try to provide users high level formalism, while supporting process execution by compiling the graphical 
representation into executable formalism, but their translators are pre-defined. For more flexibility, a PML should 
support the user-adaptable informal representation and the approach to transform gradually an informal model into a 
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formal one[9], but none of existing PMLs can reach the requirement. 
We propose a process modeling language FLEX that can support all features mentioned above. Based on 

object-oriented, rule-based and constraint-based techniques, FLEX provides an abstraction mechanism that can not 
only provide nonexperts high level representation for easy of use, but also allow users to specify process model at 
different granularities for both semantics richness and flexibility. Typically, User can also reuse existing process 
notations at different abstraction levels, based on their knowledge about the semantics, to construct higher level 
notations to extend its expressive power. Only experts need to cope with lowest level representation. Moreover, the 
formalized process model in FLEX can be analyzed for keeping the consistency, and can be executed and evolved in 
FLEX support system. 

In this paper, we focus on introducing the specification method of FLEX. The approach for analysis and 
evolution will be mentioned in forthcoming papers. In Section 1, we identify architecture and main features of 
FLEX support system. Section 2 briefs the executable and analyzable sub-language FLEX/BM. Section 3 introduces 
the abstraction mechanism with the explanation of how to construct process elements, control flow, data flow, and 
etc. In Section 4, we assess our approach and give a conclusion. 

1   Architecture and Features of FLEX Support System 

The language FLEX has two 
representations, one is the pre-defined 
high level graphical representation 
FLEX/PL, and the other is the executable 
and analyzable representation FLEX/BM. 
It shows the architecture of its support 
system that consists of graphical editor of 
FLEX/PL, abstraction mechanism for 
user-defined notations, a FLEX language 
transformer, a process analyzer, a process 
interpreter, a process engine, a process 
monitor, a process controller, and a 
process evolution manager in Fig.1. 
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Fig.1  Architecture of FLEX support system 
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patterns that constraint the behavior of the process model. The component, i.e., object encapsulates some 
user-defined data and provides some operations. An object can not access other objects directly, can but 
communicate with other objects by message-passing mechanism. Patterns specify the needful properties of 
operations’ occurring order while executing the process model, so we call it as pattern constraint later. The 
execution rule of the process model in FLEX/BM is as follows: while an object receives an event, it executes the 
corresponding operation if the operation doesn’t conflict with all pattern constraints of the process model, otherwise 
the operation should be rejected. 

2.1   Object 

Like common object-oriented systems, FLEX/BM has some built-in objects, such as String, Numeral, Boolean, 
and Set. User can construct objects by three built-in relations: aggregation, generalization, and association. 

Both event and condition can trigger an operation of object. Commonly, it can be specified as an ECA rule[11] 
in the form of “ON event IF condition DO action”, which shows that an action should be performed if the specified 
condition is satisfied while an event occurs. FLEX/BM prescribes the operations in one object are serialized. 
Namely, in one object, only one operation can be performed at any time, and events occurring while an operation is 
executing will be performed after the operation is finished. It makes the semantics of those operations in concurrent 
objects can be characterized by interleaving. 

2.2   Pattern constraint 

The operation sequence while executing a process model should satisfy all of the pattern constraints in the 
process model, that is a regular expression whose operands are operations of process element and operators can be 
subsequence (;), concurrence (||), exclusive OR (⊕), NOT (¬), optional ([]), iterative (+), and optional iteration (*). 
With the quantifier ∀ and ∃, we can specify the pattern constraint on the operations of a kind of objects. Our pattern 
constraint derives from the idea of the operation pattern in OBM[14], and provides more powerful and intuitive 
representation. Firstly, there are only a part of operations in one pattern constraint, so any operations that haven’t 
been mentioned can execute in any order. In addition, except for specifying pattern constraints on the operations of 
an object, FLEX/BM allows to specify pattern constraints on the operations of multiple objects. 

3   Abstraction Mechanism of FLEX 

FLEX support to construct notations for specifying process model to extend itself with the abstraction 
mechanism on the basis of FLEX/BM, so the high level representation FLEX/PL. 

3.1   Common process elements in FLEX/PL 

Although existing process modeling languages have various notations and formalisms, there are some 
acknowledged process elements, such as activity, product, role, agent, and tool. In FLEX/PL these process elements 
are pre-defined objects with definite semantics, and users can define new process elements by the built-in relations 
in FLEX/BM. The graphical notations of those elements are shown in the following: 

Generalization Aggregation Association Role Agent ToolActivity Product

Fig.2  Graphical notations of some process elements and relations 

For example, the product object has two fundamental operations read and write, and two states initial and 
submitted whose transitions are specified by state transition diagram. An example shows three user-defined 
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products and their structures in the left section of following figure. There some files and documents constitute a 
module, and documents are special products that should be reviewed to ensure their quality. So the module can be 
specified as the aggregation of the file and the document. New state reviewed, operation review, and modified state 
transition diagram are added to the specification of the document. The specification of products in the left section is 
high level and intuitive, which is the abstraction of the FLEX/BM program in the right section, where the definition 
of product object is omitted. 

file IS product;
document  IS product {
  state : (initial, submitted, reviewed);
  on read_event do read;
  on write_event if state = initial or state = submitted
do write;
  on review_event if state = submitted do review;
  review() { state = reviewed; }
}
module IS product CONSIST { file, document }
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Fig.3  An example for constructing products 
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some constraints on the execution order of activities should be specified in order to reduce the indetermination of 
the behavior of the process model. For example, there are some typical relations between two activities below that 
decide the behavior of activity B based on the execution status of activity A, which can be transformed into pattern 
constraint specifications: 

Table 1  Relations between two activities and their pattern constraint 

Relation Description Pattern constraint 
finish-start B can start only after A is finished. (A.commit ; [ B.start ] )* 
start-start B can start only after A is started. (A.start ; [ B.start ] )* 

start-finish B can finish only after A is started. (A.start ; [ B.commit ] )* 
finish-finish B can finish only after A is finished. (A.commit ; [B.commit] )* 
after-expect After A is finished, B should be executed. (A.commit ; B.start )* 

after-prohibit After A is finished, B can’t be executed. (A.commit ; ¬ B.start )* 

A 

while-prohibit 

B

While A is executing, B can’t be executed. (A.start ; ¬ B.start ; (A.commit ⊕ A.abort))* 

Obviously the relations between two activities can be readily extended to form the 
relations among multiple activities to determine the execution sequence of activities. But 
sometimes user needs to specify some activities to be non-concurrent, i.e., only one of 
the activities can be executed at any time. In this situation, the execution sequence of 
these activities isn’t determinate, and process performer can select and execute one of 

them at one time. 

non-concurrent 
A1 

An 

For reaching the requirement, relation non-concurrent among activities is introduced, which can be 
transformed into a pattern constraint PATnon-concurrent=∀(A,B|A,B∈S) (A while-prohibit B), where S is the set of those 
non-concurrent activities {A1,...,An}. The pattern constraint shows that while executing any activity in S, another 
activity can’t be executed. So the execution order of activities in S can only be serial, but the pattern constraint 
doesn’t constrain the execution behavior of those activities, which are determined by the pattern constraints of each 
activity itself. 

3.3   Data flow specification method and collaboration mechanism 

In process model, the input and output products of activities construct the data flow, and determine the 
permissibility of the activity operates the products. Obviously, an activity can read and write its output products. In 
FLEX/PL, an activity can access its input products in read only mode or write enable mode. 

If an activity A can only read its input product P, a pattern constraint “¬ A.submit(P)” should be satisfied. On 
the other hand, if a product P can be written by multiple activities A1,A2,…,An, a synchronization mechanism should 
be used to keep the consistent version of the product. User can define version control mechanism, and there are two 
pre-defined mechanisms in FLEX/PL. One is Multi-Version Concurrency Control (MVCC) Mechanism[15]. After a 
product is changed by an activity, other activities should get the newest version of the product before attempting to 
submit it. The mechanism can be presented in the following pattern constraint: 

∀(A|A∈{A1,A2,…,An})(A.submit(P) after-expect((\A).get(P); [(\A).submit(P)])) 
The other is check-in/check-out mechanism, where only the activity that checks out a product can check in (submit) 
the product. If user chooses to use the check-in/check-out mechanism, the operations of activity to operate products 
are changed to get (read), check-out (read), and check-in (write). These three operations satisfy the following 
pattern constraint: 

∀(A|A∈{A1,A2,…,An})(A.check-out(P) before-prohibit A.check-in(P) ) and (A.check-out(P) after-prohibit (\A).check-out(P)) 

Product change control mechanism in the collaboration of multiple activities can also be described in pattern 
constraints. If an input product of an activity is changed by other activities, the activity should get the current 
version of the modified input product before it tries to submit some output product. The corresponding pattern 
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constraint is “( [P.write] ; A.get(P) ; ∀(o | o IS product) [A.submit(o)] )*”, where P is an input product of A. 

3.4   A simple process model example 

Here we use FLEX representation to model a simple process to exemplify some benefits of our language in 
Fig.4. It consists of three concurrent activities, which are design_step, coding_step and review, where the result of 
executing activity design_step is design_document that should be went through by activity review. If the 
design_document can’t reach the expected requirement, a feedback message that is a special product will be sent to 
activity design_step for requiring a revision, otherwise a review_report will be submitted. Only after the 
design_document has past the review, activity coding_step can proceed and generate source_code. Data flow, 
control flow, and mechanism of product control and collaboration of the process model are implied in pre-defined 
relations so that the process model looks concise and intuitionistic, and two explicit textual sentences are specified 
for customizing the process model. 

Fig.4  Main part of a simple process model example 
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In this example, data flow relations in the process model imply the mechanism of product access and change 
control, which can be transformed into some pattern constraints according to the abstraction mechanism, 

4   Conclusion and Future Work 

We propose a flexible and formalized process modeling language FLEX that bases on object-oriented, 
rule-based and constraint-based techniques. FLEX and its support system can reach the requirements in process 
domain, such as semantics richness, easy of use, flexibility, scalability, reuse, and distribution. Two sub-languages, 
FLEX/PL and FLEX/BM, are proposed to different goals. FLEX/PL aims to be easy of use for non-experts, while 
FLEX/BM aims to definite and rich semantics. In this paper, we focus on introducing the abstraction mechanism of 
FLEX, which supports to define high level notations on the basis of FLEX/BM in order to glue the gap between the 
notations at different abstraction levels. The features of FLEX/PL in detail are not involved in this paper, which can 
be found in Ref.[16]. 

The most important advantage of the abstraction mechanism of FLEX is that it supports users (not only 
experts) to customize the notations for special requirements in various granularities based on existing notations. And 
the abstraction mechanism of FLEX supports to transform gradually the user-defined informal representation into a 
formal FLEX/BM representation. In this paper, clearly there are specification methods at four different abstraction 
levels at least. 

(1) Implement level: The method at lowest abstraction level is the object specification in FLEX/BM that can 
implement all functions of a process model needs, which is similar to the formalism of MOKASSIN that are based 
on rule-based formalism. Only experts can cope with the representation of this level. 

(2) Constraint level: The pattern constraint can specify the behavior of process model intuitively. In this level, 
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the properties, not the procedures, of process model are specified. Especially, the properties involving multiple 
objects can be specified directly. 

(3) Semi-nature level: For example, the temporal relations among operations can specify the temporal order of 
operations in a way that is similar to natural language description, such as “after ... should ...”. Most of users can 
readily understand it without different meanings. 

(4) Graphical level: The graphical notations, both pre-defined and user-defined, is the high level notations that 
can be readily understandable. Different organizations or users can customize their own graphical notations. 

In contrast, APEL has rich expressive power by defining abundant graphical process notations, which cover 
most of process elements, control flow, data flow, state diagram, concurrence, and collaboration. MOKASSIN pays 
attention to the process modeling in workflow. It integrates the high level constructs of task graphs and the 
flexibility of rule-based techniques into a coherent framework, hence can support the user-adaptable and flexible 
process modeling. But, both APEL and MOKASSIN can only construct user-defined notations or customize process 
model by specifying rules. The method is difficult to most of users because it involves too many details in process 
model. In addition, the user-customized rules must influence other parts of the process model, so the rule-based 
process model will become complex and uncontrollable. Hence, our approach with abstraction mechanism is more 
flexible, intuitive, and easy to specify process model and to reuse existing process notations. 
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一个柔性的形式化过程建模语言 
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1(中国科学院 软件研究所,北京  100080); 
2(华东理工大学 计算机科学系,上海  200237) 

摘要: 提出了一个柔性的形式化过程建模语言 FLEX.它具有丰富的语义、易用性、灵活性、可扩充性、可重用性
和分布性,是一个可分析、可执行、演化的过程建模语言.建模语言不仅提供了高度抽象的描述方法以便于一般用
户使用,还允许用户通过重用的方式自定义多种抽象级别的语言元素来扩充语言的描述能力.因此,FLEX 语言可以
支持不同层次和需求的过程建模. 
关键词: 软件过程;过程建模;面向对象;模式;PSEE 
中图法分类号: TP311      文献标识码: A 
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4.投稿地址：华中师范大计算机科学系 谭连生 教授收 (E-mail: L.Tan@ccnu.edu.cn) 
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联系人： 谭连生教授, 电  话：027 87673277, 传  真：027 87876070, E-mail: L.Tan@ccnu.edu.cn 
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