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Abstract; Functional languages and logic languages complement each other in the following sense. Functional
programming languages, based on reduction, have properties such as deterministic evaluation and lazy evalua-
tion; however they lack some desirable properties such as existentially quantified variables and partial data struc-
tures, On the contrary, logic programming languages, based on Horn clause logic and resolution, allow existen-
tially quantified variables and partial data structures but lack both deterministic evaluation and lazy evaluation.
From this point of view it is natural to integrate functional and logic programming languages into one paradigm,
This provides a unified language with more expressive power than both logic and functional languages. This pa-
per discusses the proposal for an operational seimantics of functional logic langnages, and demonstrates that the
operational semantics is practically visible.
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Rarrowing

Recently there is an increasing interest in the unificztion of functional and logic languages. In the literature,
two approaches arc deseribed to integrate functional and logic programming languages. The first approach is to in-
tegrate logic programming aspects into funetional programming languages™ “*'. This approach requires allowing ex-
istentially quantified variables in expressions and using unification instead of matching in the reduction process.
The other approach is to extend logic programming languages with a method to allow funcuvn delinttion and evalu-
ation**). This approach requires an extension of the resnlution principle which is based on syntactic unification.
Both approaches to the integration have a similar operational behavior. however. The pperational semantics of
{unctional tanguages ix rewriting and of logic languages is {syntactiz) unification. From the simple fact that, nar-
rowing = rewriting + unifiration, one can guess that narrowing is 2 nwiural cheice as an operational semantics for
functional logic languages. This observation can be emphasized by the fact that narrowing is complete for various
classes of rewriting systems'™,

Narrowing was originally conceived as an E-unification (unification modulo some equational thesry E) proce-
dure in the framework of eyuational theorem provingt™. Narrowing ia its original definiticn is complex and ineffi-
cient. The reason for the complexity can be seen from the process of 2 narrowing step. as tollows. In @ single nar-
rowing step we have to: select a subexpression to be narrowed {narex}. select a rewrite rule /== m such a way
that its left-hand side / is unified with the selected narex via a most general unifier &, and replace the narex with
the instance af the right hand sidc » under & The reason for the inefficiency of narrowing is the non-determinism in
narrowing steps (due to narex selection znd rewrite rule selection} which results in a huge search space.

Two approaches have been pursued to improve narrowing. One approzch is to introduce a restricted version of
narrowing, known as narrowing strategy™*). One of these strategies is basic (conditicnal) narrowing!'", in which
rarrowing steps are mnever applied to (sub ) terms introduced by previous narrowingsubstitutions. Basic

(conditional) narrowing is an important improvement over (conditional) narrowing since it results in a significant
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reduction of the search space. The other approaches. (e.g. Refs. [11~14]) which we pursue in our research, is
to simulate narrowing by a simple set of inference rules formalized as a calculus.

In our work"® we established an interesting connection between the two approaches. More precisely we
connect (strong) completeness of our calculus with completeness of basic conditional narrowing.

We deal with conditionzl narrowing problems from both theoretical and practical point of view. The theoreti-
cal part, in our work, tackles the (conditional) narrowing problems {mentioned above) as follows.

To overcome the complexity problem, we decompose narrowing into more basic operations. These basic
operations are represented as inference rules and the set of inference rules is formalized as a caleulus, We name this
calculus Lazy Conditional Narrowing Calculus} (LCNC for short)., For LUNC-like calculi, soundness and com-
pleteness are important properties. Soundness means that the computed answer hy the calenlus is correct, while
completeness means that for every solution of a given goal, a more general soluzion can he found by the caleulus.

Soundness of LCNC is easy to show, while completeness is difficult. In our work"* ') we established several
completeness results for LONC.

LCNC contains three sources of non-determinism. the selection of the inference rule, the selection of the
equation in the goal to be solved. and the selection of the rewrite rule.

While LCNC solves the complexity problem of (econditional) narrowing and eases its implementation, the
inefficiency problem remains unsofved due to the existence of nondeterminism in LONC.

To overcome the inclficiency problem we introduced™® a deterministic version of LCNC which we call LUNC,.
The practical aspect of our work demonstrates the significance of our calculus, as [ollows. We give a full imple-
mentation of LENCy using Mathematica"®. Existentially quantified equations can be solved by our calculus with
respect to given rewrite rules. Thus our implemen:ation extends the symbolic computation language Mathematica
based on higher-order rewriting.

One of rhe immediate objectives of our implementation weas to realize guick and elegant runnable calculi to
study narrawing on a wide class of examples beyond hand calculated cnes. However, our implementation results in
a calculus that is usable in a variety of applications such as a functional logic language interpreter, in which
programs are regarded as conditional term rewriting systems (CTRSs far shart) and goals as a sequence of equa-
lions, s well as an equational thearem prover. Tn addition, our implemented calculus can be used as a research
tool usable within Mathematica for studying equation solving with respect to various classes of (conditional) term
rewriting systems. .

In this paper we demaonstrate that our deterministic lazy conditional narrowing calculus can be observed as an
operational semantics (or functional logic languages. We discuss an implementation of the calculus. Finally we

present an application of the implemented calculus in the polymorphic type inference systems.
1 Preliminaries

In the sequels we assume familiarity with term rewriting and narrowing, surveys can be found in Refs. [6,20,
21], however we will give some definition that we need in this paper.

First order terms 77 (terms denoted by s.¢...., etc. ) over a sct of function symbols with arity (function
symbols denoted by f.g...., etc.) and a countable set of variables %" (variables denoted by TsYeo.. s eTC) I8
defined as the least set that sarisfies the following .

= variables and constants (i.e. function symbols with arity zero) are terms, and

*if tis... st are terms and f is a function symbol with arity n. then fét.. .. .t is a term. (f is called the

head symbol of that term),

A set of variables in a term ¢ will be denoted by %"ar(z). An equation is a pair of terms written as s=t. A goal
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(7 is a scquence of cquetions. If the sequence is empty the geal is denoted by [[]. A substitution ¢(denoted hy 8,
¢s... ete.) is 2 finite set of variable bindings {(i.e. pairs of variables and terms) of the lorm =2, where x is a
varisble and £ is a term. The domain of @ is the set of its first components (i.e. variasles) and the range is the set
of the second components (. e. terms). An application of a substitution ¢ 1o 2 term ¢, (denoted by #8, is the pro-
cess of replacing variables of ¢ thet occurs in the domain of & with the corresponding terms in the range of 8. This
can be extended to a goal G, denoted by 8, in the obvious way.

A rewrite rule is a directed equatian (/=) denoted by I-+r. A conditiona! rewrite rule is a rewrite rule with a
sequence of equations which should be solved before we apply the rule. It will be denoted hy f~*r<s,2e7,,. .. 45,7
t.{or I—»r<=c for short), For a conditional rewrite rule /~~r<=c, / is the left hand side. 7 is the right hand side, and
¢ is the conditional part of the rule. A (conditional) term rewrite system ((C)TRS for short), denoted by %, is a
set of (conditional) rewrite rules.

The head symbols of the left hand sides of the rewrite rules, in a term rewriting system 47, are called defined

function symbals. Other function symbols are called constructors.
2 Operational Semantics

In this section we introduce our deterministic lazy conditional parrowing calculus (LLCNC, jor short) as an
operational semantics of functional logic languages for which programs can be represented as term rewriting sys-
tems. We demonstrate that our operational semantics is practically visible by introducing a Mathematica implemen
tation of our calculus.

2.1 LCNCG,

Let % be a CTR3. LUNC, consists of the [ollowing two groups of inference rules. The first group of LCNC,
15 related 10 Lie initial egvations (and its descendenrs) and consists of the following five inference rules.

[UJ qutermost narrowing

PGV IR
L N - o £

and

t2=f (500 .. 050G
s 4, W5 Dl et 0 G

if there exists a fresh variant S/ ... . [, >=r<c of a rewrite rule in 7, where the head of ¢ is a constructor sym-
bol,

[i] imiration

PO B I -F R &
($1320) 5, 00 98=2r,,(G)0

and

aze (s, .. .5.0,6
(5,222, .. .., ,85,2=x,,0()f

where fis a constructor symbol, £ €7 ar(f(s1y. .. 48,00 0F F(S1. .. o5, IS TIOT a constructor term and §— (& b=
Hriooxdy with 7. .. oz fresh variahles.
[d] decomposition
Flsive s )z e 8,) G

7 S TN &

where f is a constructor symbol ,

[v] variable elimination
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s2zx G d x2s5,0G
Y B ain T =a
[&] Gé
where 5 is a non-variable constructur ternr, & S ae s and 8={a =2},

[1]  removal of trivial equations

b

X

2

sy

@l

Culnrary 1o usush AT TOW DR + the outermaost nArrgwing [U] generalcs new parameter pas&ing equations 3 l>
Fiooo45,07 1, besides the body equation 7%= and the conditional equations ¢, Here we distinguish paramcter passing
equations (znd its descendents) from the initial equations (and its descendents). We use the symbol > (instead of
the symbol =) for the first. The second group of LONC, is related to the parameter passing cquations (and its de-
scendents) and consists of the following three inference rules.

[o-p] outermost narrowing for parameter passing ¢quations

f{.ﬁ,_,. 4. ,s,,)L\-!,(.:

:"1 N S S
if there exists a fresl vatiane fQ ... . L) r<=¢ of a rewrize rule in &, where ¢ is not variable,
fd-p] decomposition for parameter passing egquations

f{.ﬂ,... qﬁn}bf‘:f:!-c- 2y 1060
— T

5!F>I| PR N &
where f is a consiructor svinbol,
Cv-pl  vartable elirnination [or parameier passing cquations

sPr a6 xlanG
co T

where 5 is a non-variahie term, and 8= {xb>s}.
1E G and 67 are the upper aud lower goal in the inference rule [o (€ loyisdsvitq0-pod-pro-pl)s we write
GG This is called sn LCNCy step. The applied rewrite rule or subatitution may be supplied as subscripts that
is, we write things like G=> . e .G and G007 . A sequence of LCNC -steps 1s called LCNC, dexivation. A fi-
e LONC ~derivation Gr=rg .0 g, 1G" may be abbreviated 10 Gy=7 G, where §=6.. .. 6,.. Ar LCNC;-refuta-
tion is an LOCNC-derivation ending in :he empty goal [, The parameter passing eguativns must eventually bhe
solved in order 1o obtain & solutien s but we do not require that they are solved right away. That is the reason why
we call the caleulus luzy.
The following cxample shows how this calculas works.
Emample.  Consider the follawing conditional rewrite system that represents a {partial) family relationship
father (hrother (o) d—=Ffather(z)
brother (z)—= y<={ather{x)=z, father (¥}~
grand _father (x )—=y<=Father(x)==z, Tather(z)~=y
The fotlowing fligure «haws an I,CNC-refutation tha: computes a (pussible) solution {z}=Jon} for the goal grand _
father { brother {z})=-Father(father {Jen}) (the underlines represent the selected equation at each LCNU-step).

grand . father (brother (1) } == [ather (father(Jon) )

U ol
brother ) [>x,, y=-father (father (lon)) , father () ==z . father (z) =y

4 Tealfe | bebrabest ey,

U [+, yletatber fater Jon 13!
Tather (hrother () )=z . father (z)==father (father (Jon) )

U Tv]. {zh~tEther (BrOIORE Y.L+ 3t
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father (Father (brother () ) )==lather (father (Jon} )
4 a3
father (brother(z) )==father{Jon)
o
brother () [> brother (z,) . father (z; )= ather (Jon
¥ tan
x[> x;, Father (x; ) ~father{Jon }

U Lv n]-uzl--n
father {z )==father (Jon)
‘U’ [d:

a==Jon

4t teveomt
O

Although soundness of LCNC, is easy to show ., its completeness is rather difficulr and still under investigation
for future work. However, soundness of [.LUNC, is sufficient in applications where we are interested in one or sev-
eral solutions. For example. ta reduce the complexity of finding symbalic solutions of equational constraints over
arbitrary aigebraic structure, a solution pattern approach was intreduced in Refs. 22,23 . In this approach pat-
tern solving is successful if some substitution of the unknown coefficients within the pattern turns the pattern into
a solution,

2.2 Implementation

To avoid complex interaction between our system and Mathematica built-in conditional rewrite rules, we
adopt cur own implementation of conditional rewrite rules. More precisely, we defined an optimized representation
of conditional rewrite rules. The idea is based on the observation that the conditional rewrite rule f{s)—>r<=c can
be represented by f{x)—=t<xr=s,c, where r=ys is a parameter passing equation, in the case of s being a non-
variable terrn. This representation makes it possible:

1. to eliminate runtime creation of parameter passing cquations, and

2, to use paremeter hinding mcchanism of Mathematica rather than applying the variable elimination rules of

our system.

The inference rules implemented dircetly inte Mathematica rules. We have a uscr interface for our implemen-
tation in a form of Mathematica solvers. This solver tekes as input a sequence ol eguations and produces as output
the set of all possible sclutions for these equations with respect to a given conditional term rewriting system. Exis-
tentially quantified equations can be solved by our solver with respect 10 given rewrite rules. Thus our system ex-
tends the symbolic computation language Mathematica based on higher-order conditional rewriting. For example,
consider the one-rule term rewriting system suce[0]—=1, To solve the simple goal suce_x]==1, which has the so-
lution iz }>0}, by using the Mathematica solver Solve[suce[x]J==1., {x}] we get the answer {x=succ '[1]}
which is not the desirable answer. Using our solver we get the correct answer { {Xx—0}}, however. This shows
that our implementation can also be used as an equatianal solver that extends Mathematica solvers.

Although LCNC, is considered as a deterministic caleulus (in the sense of applying the inference rules), Lhe
selection of the rewrite rule (in case of outermost narrewing ) remains a source of non-determinism. This type of
non-determinisim can not be avoided since it may happen that a goal has some incomparable solutions. In vur sys-
tem we try to simulate this non-deterministic behavior of 1LCNC, by applying all applicable rewrite rules.

An operation of our implemented system is achieved (by induction on goals) as follows. FFor cach inference
rule in LCNC, there is a corresponding Mathematica program. Depending on the structure of the leftmost equation

in the goal, the system applies the suitable inference rule to get a new goal G. If & is empty (base case of
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induction) this means that a solutivn is found by the system and this solution will be added to the global variabie
Answerkist whicli hiolds all pessible splutivns of the given goal. T the applied inference rule was the outermost nar-
rowing, our system will try the next applicable rewrite rule. If no applicable rewrite rules exist, the sysiem termi-
nates and returns the Answerlist us the set of all possible solutions of the given goal, If the system fails to find the
solution (s} of the given goal, it will return the empty list as the set of solutions. In the following section we
demonstrate that our aystem has potential to be used as au equational solver in systems which can be represented as

a sequence of equations.
3 Type Checker

Polymorphic type inference systems are essential for declarative languages such as functional logic languages.
In this example we describe an implementation of a shghtly extended version of Hindley's type inference system
(and its counterpart of Milner). We usc cur system’s equational solver TSolve as a tool to solve equations between
polymorphic types. More precisely, we generate a sequence of eguations between (polymorphic) types and then
TSolve is used 1o check consistency between these eguations.

The type checker for a term is implemented as follows:

Telterm_1: —Modulel {tegn.ivar} . {tegn,tvar } =

Texfterm, e, { 3o lat s

«/. TSolve[ tegn,tvar J[[1]]17
To check the 1ype ol a term 1, Te[t] is used. To[t] will check the type of the term t in two steps. First, it invokes
the auxiliary function TeX[ ] (its simple implementation is ommited} wich t as jte first argument. Depending on the
structure of t, ToX[] will form @ sequence ol type equations swred in teqn, and a sct of type variables stored in
tvar. In the second step. Tc[] invokes the erm domain solver TSolve[tlegn,tvar] with the arguments tegn and
tvar. At this moment TSelveltean tvar ] will give the sulution of the type cquations tegn with respect to the type
variables tvar. The returned result by this process will be the application of this selution tv an auxiliary type vari-
able @ extracted from the term structuic via TeX[] in the first step.

A (canditional ) rewrite rule /->r=s =gy, oL 48,501, 15 correctly (yped if all the terms Z4r 3514805 - . 15008, are
typed with the same type, and all the types assigned 1o one variable (that appears in left-hand side. right-hand side
and conditions) arc one and the same. The following program can check this consistency by using TSolve. Tle
type checker for a {conditional) rewrite rule is implemented zs follows

Tc[RewriteRulels_.t..c__ ]].=

Module[_ {tegn.tvar},

{tegn .tvar ) ==

TeX[ XRewriteRulele,t, ¢} oo, { ¥, {a}]:

o/, TSolve[teqn.tvar || [1]]]
The operation of T¢ on a (conditional) rewrite rule s—=t<=c is similar to the operation of T¢ on a term t described
above. The only difference is that another rule of the TeX funciion definition is used to extract the type equations

and the type variables from the more complex structure of the rewrite rule.
4 Conclusion

In this paper we discussed our conditionul narrowing calculus (LCNC,) as an operational sermantics of fune-
tional logic languages, We also discussed our implememation of LENC,. This work is an extension of the work of

Middeldorp, et af. ™' in which they tackle narruwing problems for the unconditional term rewriting systems by
p g P B Sy
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introducing the lazy narrowing calculus LNC™!" and its deterministic version LNC,24. In funntiunal“ogic programs
it is more nztural to express programs as conditional term rewriting systems'®"’, From a syntactic point of view the
extension {rom unconditional to conditional casc seems to be simple since we only need to add conditions wherever
rewrite rules are applicable. However, this (syntactically) simple extension makes the completeness proof harder
since it adds new equations (conditions) to goals in intermediate steps in the narrowing process. Conditional

rewrite rules may also introduce extra variables which make the narrowing process more complex.
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