1000-8823/2001/12¢0313659-09 w2001 Journal of Soltware 3 ¥ W Vil 12, No. 5

Research on New-CMAC with Differentiability Output and Its
Learning Convergence

WANG Shi-tong?*%,  .F. Raldwin®, T.P. Martin?

A Department of Computer Science . Kastchina Shipbuilding Institute, Zhengjiang 212003, China)
HAdvanced Computing Research Center, Bristol Universitn, UKD

E-meil: zjstwang@public. zj. 's. er.

http ¢/ /www. z]. js. cn

Received April 18, 2000; accepted Outober 17, 2000

Abstract . In this paper, based on conventional CMAU (cereheliar mode! architecture controller ) neural net-
work and locally weighted regression, the improved New CMAC with the same amount of memory as that of
conveational CMAC 18 presented , which has the conventional cutput and its derivative information output and
hence is espesialy appropriare for automatic control. Accardingly. the new learning algorithm is investigated,
and its learning convergence is proved.

Key words; -CMAC (cerebellar medel architecture controller}; learning algorithmy differertiability output; lo-

vally welghied regression

Cerebellar medel architecture controlier CCMAC)'Y s o table lookup based neural network, and is getting
more and more applications, especizlly w: real time contzol. due ro irs attractive properties of learning convergence
and speed. A problem is that conventional CMAC carnot provide derivative information of i1s eutput. This creates
Eoth difficul-y and inconvenicnce in the learning process that needs derivative informarion. COhne example is action
dependent critic learnirg 'l

I this paper, we present the Now-CMAC scheme that integrates locally weighred regression-* with the con-
ventional CMAL addressing technigue to solve this preblem. Derivatives cxist everywhere except on the houndaries
ol quanrized regions. With rhe use ol the conventional CMAC addressiug technique, data poines in the input space
are efficiently organized. Only data in the local area are used for regression. This limits the computational com-
plexity efficiently. We will prove that the New-CMAC is a universal approximator and its new learning algorithm
has the learning convergence.

This paper is organized as follows. In Secticn 1. the conventional CMAC is briefly reviewed. In Section 2, the
New-CMACU with weighted regression and dillerentiability oumipot is described. In Section 3, its universal approxi-

mation property is proved. [n Section 1. the new learaing algorithm ic desarihed . and then 11: learning convergence
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is investigated in Secticn 3. In Section 6. the conclusicn is derived.
1 Conventional CMAC

We cen view conventional CMAC as a technique with a basis function that has a constant value of 2 ‘17 within
a restricted area. The area is a sgquare, a cube ar 2 hynen‘ube, depending nn the dimension of the in[)ut SPAace. Tte
technique can be explained by Fig. 1. Each input state variable is quantized into several discicte regions, named s
Aus Ab,Ba, ete. « which are called hypercabes. If the quantization for each varizble is shifted by one small interval
(called an element), different hyperenbes will be obrained. F oG BT for »; and f,g.i.- viejfor z; are exarmples
ot such shifted regions. FA,Fi.Flg etc. are new hypercubes resulting from the shifted regions. In most CMACs,
no hypercube is formed by the combination of different lavers such s ‘A, E.C.D7 and “f.z-h,i. ;7. With this
kind of quantizetion and ~yperube compositior, each state is covered by N, different hypercuhes, where N, is the

number of elements in a complete block.
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The outpu? of CMAC for a state is ablaired as the sum of stored conlul‘.‘ls [or hypercubes covering the state.

Let x=0(s yroeee. e .. 2’ be the state, which is the input T(x) to & CMAC. In mathematical descriprion, we
can define a vector indicator f(x) as

I~ ) dafxd s L xd  deix? o

where £,(x) 1 il memory location 7 is used by one hypercube covering x; I,{x) =10, otherwisc. The vector indi-

eates the memory location used for stering information for x, Lot M=[a utss. .. vm. " denote the vector of all

he centers in physical memory, With [ as (e memory usage indication vecter s iniormation stered for the srate x,

e 4 the output of CMAC. czn be expressed as
»

h
VO =ML = 2m ] Ge) 1
!
[n fearning, the values of m; are parameters to be determined. Althougn the ourput of CMAC car. be expressed by
Eq. (2), it is actually retrieved from just a small number (N,) of memory locations allocatad to the hypercubes

covering the state.
2 New-CMAC with Weighted Regression and Differentiability Qutput

Now , we present the new CMAC scheme, called New-CMAC, We combine CMAC with locally weighted re

gression technique and make New-CMAC to have two outputs: (2) v(x) as in Eq. (2} 3 (b) derivative informaticn
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¥ (x). In many real time controls, it is necessary to know the derivative informatior.. Hence. New-CMAC with
dilfereutiability wulput is more suitable for many practica} applications than corventional CMAC,

CMAC addressing technique is adopted for systematically selecting a set of neighbaring points, The same
method of hypercube decomposition for CMAC is used bur the output is computed differently. The New-CMAL
stheme intends to have the target fuaction value at the hypercube center stored at the memeosy allocated to that hy-
percube. To retrieve information far a given input . the hyperenhes covering ¥ are first idenrified. The curput for
¥ is computed from a local regression model formed by using the data stored for the hypercubes. The construction
of the local regression model and the compntation of the function value for 2 given x will be introduced belaw fol-
lowed by the ofien-used learnitg algorithm.

In discussing information retrieval, we assume that the correct data bave been stored. The weighted regres-
sion rechnique assigns different weights for data poinrs at different distunces. Given an inpur point x. the weight
far a hypercube depends on the distance from x to the center of the hypercube. A small modification of Eq. (1) will
be encugh 10 describe the chauge. The element 7;(x) will be new!ly defined 25 a function of the distance between
the input and the center of hypercube j as

exp(— | x—C, | /a,) if hypercube j covers x
I(x)= (3)
o] otherwise
where €, is the center of hypercube 7+ @15 the given constant. The centers and memary contents (€, . ) for hyo
percubes that cover x are used to generate the local regression model. C;and m, are weighted before the regression
is done. Suppose z,,z,.. .. sz indicate the waighted center of N.involved hypereubes and v, 0320 .. » VN, indicate
the corresponding weighted memory centents, Let z;and v, be for hypercube %, then z; and v, are defined as
z,=1,(x)0 (4)
AT ()
where b=j or k()7 We take k= below for simplicity. Plesse note that this does not destroy our analysis, only
far denotation simplicity. The locally weighted regression is 1o determine the vecior of regression coefficients for

the following equation to achieve the Teast sqnare error.

y=zk i€y
where Y= {3, yis. e rvn e = {zhz0,. .. »zy )7, Please note: zis an N, Xn matrix . Taus . & can be solved as
="y {7

where b is an 7 X | mamx. The effect of weighting is that the error {or a distant pomt is considered less imporiant.
With b obtained in Eq. (7), the output 3{x) is computed as

y=1x'h €3]
Tae curpar is continnous and differentizble except ar the boundary of a quantized element. The vector & gives the

derivarive information.

3 New-CMAC as a Universal Approximator

In this section, we will prove that New CMAC is a universs] approximator, i e. , it can approximate any giv-
en real continuous function oo a compact demain to arbitrary accuracy.

Thearem 1), If the basis functions 7;(x) are differentiabie in arhitrary crder, then their linear combination

1
Lp,f.(x) is a universal approximator, where p; is a real coefficient,
We will use the above theorem o prave Theorem 2.
Theorem 2. New-UMAC is a universal appraximatar.

Proof. Suppose x={(x\sazs .. 1) O;={gjser. .. 200 . Interms of Eq. (43, we have z;= (L, (020
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I,(e0e,)7. In terms of Eq. (3), we derive that I,(e)c,{k=1,2,... 1) is eicher exponential-type function of x or
0.

Thus. we know thar z— (2, .zps. . sza, Y is an 73X N, matrix w which each clement s either exponential-type
function of x or U. Obviously s based on the abuve, we further know (<723 —1 is also an »# > »n matrix in which each

clement is either exponential- type function of x or 0. Thus. b= (2"z)" 2"y is an % >(1 matrix, it can be further ex

pressed as
M’
E_v,,!;;exp(*{&;(x;cl.. R AV D
£y ‘ b
b=12"z2)""d"y : =13 (3]
N" b"
Dl wduexpl- @ (x.Cran. Ly D)
k1
where /i 15 a constant or . %, s a polynomial-rype functionm abont r. 0, .. .. .(\. I I U N =l I DU
In terms of Eqgs. (8) aad (9), we have
_}P(.l‘)f /Jb = Z = lr sndpexpl —@ (x Coyl 000D am

We view exp{—@, (x.Ch.. .. ‘C“’r}) 58 the bdblh function. Obvicusly, »(x) in Eq. (10} k 1he lincar combina-
tion of those basis functions. Decause expl—g (¥ O .Cy 1) is differential in arbitrary order. in terms of The-

orem 1. »(x) n Eq. (10} is a uaiversal approximartor, i.e. , New-UMAC iy a universzl approximator.
4 The New Learning Algorithm New-LA of New-CMAC

As it was poinred out previonsly, an important advantage of New-CMAC over ennventional CMAL is thar it
can give both derivative information b and ourput ¥(x). However, how do we desigu a learning algorithm for this
New CMAC?

The objective of learning is to determine the function values [or the hvpercube centers. However, these targer
values are not explinitly provided. Data available for training could be at any location in the inpu: space. e mem-
ory contents must be derived from the evailable llormation. Given en &, the new learning algo-ithoy New-1LA be-
tow uses the current memory contents to form the local regression model and then uses the model to evaluate the
output for mmput x. The difference between the targer value and the evaluated value is used to modify the vector b.
Note that the new vecior & is not memorized , but is used to compute an “estimated” target vertar v, (estimated val-
ue at hypercube centers] vsing Eq. (5). The guessed target valuzs are used to update memory contents,

With the retrieval procedure given in Eqs. (6)~ (83, if the target velue at x is »* (1), the crror for x i £(x)
=" (x)—ylx). Note that y' (x) & given. The rule for modifying #: should be

Sby = = (172D 3CAER(x) /Mg 3= BECx ) Iy (x ) /30 = Fap(x) (I
where 2 is the learning rate 3¢ (0.1). With the change in Eg. (112, the new y(x) will be
pSTTNUVRINID SO SF S
it 4 " ig—fll;( $J8 :;,G“.uﬁ.(z)
Let 3= 1/21'?, then the error at x will be completely corrected. However. we may usc & smaller updating rate
py]

and hence have rhe following rule for modifying the vecion b,

b=t @B ) D)t (12
=l

Le . Ab=a (y (0 =y e D) 13

el
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where @, is the learning rate, &€ (0,13.

Aomgg=—{1/2Da, A x ) g ) — e, £ (3D (y{x) Foag} — @B (a Jara L/ Oy Y —

0
: (143
a,llx)r (2 z) 2T 4
L
where @, is the learning rate. Hence. we have the learning rule for ms.
My =+ Dy 153

We summarize the above learning procedure to get the following new learning zlgori-hm New-LA for New-CMAC.

New-ILA Algorithm

1. Imtialize all memory conterts (e, ') to O,

2. For a given input x and the rarger ouiput v (xd, find 21l hypereubes that cover the inpur z.

3. Use Eqs. (43 and (5) to obtain the weighted center vertors and the weighted memory contents for ell in-
volved hypercubes. They are z,and 3,5 7=1.200.. N

4. Compute b= (") '2"yasin Ey. (77,

5. Compute y(x)=x"b as in Ly. (8).

6. Compute K(xi=y (x} y(x).

7. Upcate & by Eq. (123

8. Upcate wiz by Eq. (132,

9, Gote Step 2 if the learning result is not satisfactory.

For the above learning algoritam New-LA. a problem ccours, - e, dees it converge? (ur answer is certain.
Cormsidering Eqge. (12)~ (157, we can eastly see that tf we can prove Bgs. (125 und (14} heve the learning conver-

gence, then the above algorithm does converge. In the following section. we will give the detailed analysis.
£ On the Learning Convergence of New-LA Algorithm

in this section. we will prove that New-LLA algorithm bas the learning convergence.

Consedering algorithm New-LA%s Steps 80 9. 240 30 4, 5.0 terms of the deflinitfons of ». we know that y is a
linear combination af ay wher this algorithm excutes Step 5. Therelore s, we can further express = Am, where A
= {ay, TN, % ’\: whiich 1& bourded, i.e. . all elements are bounded in terms of the definitions of ;1,1 m= (m,y

e camp 2T Given the tea’ output ' fur input vector x, the learning rule is

Ry
=¥y Dlawm, ) an €16}
0

where ¥ 1s the learring rate,

Comparing Fe. (18 with F. {1 14) . we have

3
v(x)= Ziaum.
i
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From the above analysis, we derive that in order 10 prove that the learning rule Eq. (15 has the learning conver
gence, we only need to prove that Eq. (18) has the learning convergence.

We define m;"’ as the vector o weights before the sth sample is presented in the /th iteration of learning; v,
denotes the number of samples. We consider the case that s set of N, training data is repeatedly presented to the
learning rule.

With Eq. (16), we have

m =mi - AmE =mi Y (il —A w2 a e ) = a7
m2 Yyl —A_m2 IR,
where R, ={(aii"+... yaw X ). With Eq. (17). the difference in rhe vector m.” between two conserutive nerations
7 and i+1 is caleulated as
Dm=mi™" —m " =m0+ A — (0 Am ) = (18)
= Do Yy — A e YR Y - A mi DR, = (E—YA, (R, YDm2,
where E is the identity matrix. We define Dm{’=Dmi ", 1 (xo)==1{xx ). For simplicity, we deline E._,=(E—7YA
s— 18, 1)+ in which each element ‘s a hounded function ahont x,. Thus. we have
D =E B g E\DWEO = (BB oy BBy E)Dm ™= (£ By . EiEx o B DI (19)
Define F.={K,_ K. ,... EiE .. £, then Fi=(E, . E._.. .. EEx. .. E.Y. We can see that when 7 is su{ficiently
small. each element in E; will be less than 1, thercfore cach clement in F. is also less than 1. Please note thar
Dmi” is the accumulation of Am. that is

D= Omi® + Ami, + .+ AmiS + Am L Ami® (20)

Theorem 3. The learning rule Eq. {16 (or Eq, {15)) has the learning convergence if the number of iterations
appreaches infinity and the learning rate approaches {.

Praaf. Ploasc sce appendix,

Now, et us consider the learning rule Eq. (12) or Eq. (13). In rerms of Step 5 of algurithm New-LA. It is
obvious that y(x) is the combinat.on of 4. Therefore, we can easily apply the above proof process to prove that
the learning rule Eq. {12) or Eq. {13} has the learning convergence.

Theorem 4. The learning rule Fiq. (12) or Eq. (13} has the learning convergence if the number of irerations
approaches infinity and the learning rate approzches 0.

Now let’s examine the effects of different New-CMAC structures on the performance of the learning scheme
and compare New-CMAC with conventional CMAC. We take the function 3° — {0, ) =sin a sin z;» and define

two error measurements as follows.
Y
error, = 24 | flx sa)—FCxy o) | s for all samples,

N af o af
errar,_ . = L a N E

where error,, error, ., denote the sum of all absolute errors over a set of sampled points for the function values

+ ff)l' ﬂ]l samplcs.

and for the derivatives. f(x,.x;) denotes the computed cutput from CMAC model.

Table 1 lists the error measurements for the learning performance of different-sized structures, Each structure
is denoted by a label such as 9¢8b, which represents a structurc with 8 blocks for each variable and 9 elements for
each complete block. The use of longer memory size results in more accurate results,

Table 2 lists the error measurements for new-CMAC and conventional CMAC.
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Table 1 Comparison between different structures
Structure Memery Error, (training) Error,(test) Errerg.. ., (training) Errore-s,
5eRb 320 221 18,16 118 03 115.539
Tedh 448 i1. 1 12.09 88,94 4. 83
$e8b 378 14,1 9.71 Bl.0Z Ba. 57
Sefb 324 25. 6 15. 48 109,73 127.03
Jel0b 300 89 4. 08 56,48 74.17
Table 2 Comparison between New-CMAC and Conventional CMAC stractures
Schemne Siructure FCrior,(taiting} Ercor,Ciesi) Error.- . {training) Errory. .,
Conventional Se8b 34. 30 28. 76 —
CMAC 9e8b 27. 04 18, 28 = -
ge10b 1690 RN ® -
SeRh 23,10 19. 16 118,53 115.59
New-CMAC 9e8h 14. 10 Q7 8l &2 fi5. 87
el b B. 50 4, 09 54. 48 7417

6 Conclusion

In this paper. we present a novel New-CMAC scheme. Compared with other CMAC schemes . its major ad-

vartage is that it can provide both the cuiput and its derivative information with the same memory of cenventional

CMAC. Cur theoretical analysis shows that New-CMAC is a universal approximator and its new learning rules

have the learning convergence. This New CMAC is especially suiteble for real time controls which need derivative

information.

Further research work is how to extend our present results to fuzzy CMAC or other CMAC, ete.
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Appendix. Proof of Theorem 3

In terms of Eq. (18). we have
m(aHl_Dm(.) i m(u Dm(:l | Dm(r—n | mfr—;J:l)'u;ﬂJ %Dm‘u L +Dm§“+l.)m5") { m“(_'.):

h
Z DB E ™
k=1

Because m:” = &mi” +. .. +dm2 +m{” . in terms of Eq. (202, we [urther have

m;.ﬂl,>= ;{I( “”+Am,",*.‘ 4 L‘I)Bx-_'i i)+£m3n)+ _|_/_,|’”(mlf1 &_i_mcr)
7

-l
DI~ AR A (e A m R . — (yi — Awmi OBy + (3 —Am{ IR —. |

<_y"_, A mUR TR AmY L AmY, +mi =

/_,n« [Eﬂ«:, Am” R—Am Ry —Ay mi Ry —AmOR—. .. —A. ("R, I]+m‘°’

({y = .mi”)Ri o AL mY R Y —
TR |_Zy R — A Ro— A pymil Ry \— A miP Ry — AR, ... —A&_mD Ry | b +O(r)
perd SN BN,
(21
[Let us ubserve,
AR, — A (o o+ A DR, = A, (" Ami" —. | A Am® | L | AmPD R,
Am"R,ACu)
where w«, is bounded. Similarly . we have
A,m?"’R,=A,(m}°Jl+Am‘;f’_’_)RJ-tAJ(m}"’ +ami® 4. .. am R =
MR, 0¥,
where v, is also bounded. Thu::. for Eq. (ZI)q we have
limlimm " =Timlim { > ',\_‘ E[ E (35 —AmIIR A0y 400w | +m® + 00 f =
T ifli—e s Yt -, (22)
N
limlim ; Y(E—F) [ S5 (v — Ami R A0 +000) |+mi +0 |
=1
Because
N,
FomE \E_ . EEe.. E=E—7 2 AR+00) (23)
=1

Therefore, substituting Eq. (23) into Eq. (22), we obtain
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Towl}j-wor Yo

N N
litalimam 0 =limlim { { D4R} '] D (3 — AmO RAOYu,) +0070,) [+m® +07) | =
i=1 =1

N, &
DIV:H J{Z}yﬁR;
£~ =
"

. . . S 1%,
This means that the learning rule has the learning convergence, and converges to=| EA;R,] v Ry thereflore,
=1
this theorem holds.
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