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Abstraet ; This paper presents a small language for distributed computation with agent mebility—- Scope
language. The language is different from most existing work on distributed and mobile computation, which usu-
ally take some variants of m-calculus as their basis. The care of Scope language is a specially designed A-like cal-
culus with resources, It enables Scope language to directly mode! memory like resources, instead of indirectly us-
ing process/channel as in a-calculus. Furthermore, Scope language gives a novel treatment tc the notion of loca-
tion, which is called Scope here. Secope and memory-lixe resources combined make Scope language complemen-
tary to most other work, and provide an alternative approach to moedeling distributed and mobile systems, which
feature the simplicity of implementation and the affinity with the programming model inherent in realistic lan-
guage such as Oblig and Teleseript.
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1 Motivations

In recent years, a variety of calculi have been proposed as models of distributed and mobile computation. A-
mong them, the most widely known are Ambient™), Jnint, D, Seal™, np-calculust:. Most o these work are
extensions of some existing calculi which provide new primitives for explicit modeling of resources distribution and
agents mobility, Currently, varianis of a-calculus are the most popular basis [or such extension. As a result, in
most cases the resources and zgents of interest are actually channels and processes in process calculi.

Parallel 1o these theoretical works, research on programming languages for distributed and mobile systems are
also being pursued actively. There emerged a large number of experimental programming languages. such as
Oblig™, Aglet. Odyssey. etc. In these languages, however, channels are not the major resnurces used in pro-
gramming (at least not the only one). Instead, data storing memory cells are the resources more widely used. Un-
iike channels, whose use is for process communicariors only, the functionality of memory cells in programming is
far more versatile, Though it is true that process/channel may be used tv emulate memory cells, the emulation is

arguably awkward and has lost the intrinsic simplicity of memory cells.
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Hence, for a good modeling of mobile systems, we believe it is reasonable that memory cell be treated as basic
construct in the formalism. and a new fermalism that synergistically combine passive data with location and active

agent is needed to help bridge the gap between theory and practice.
2 Background and Related Work

As stated in Ref. [3], the paradigm of mobile compntation is centered around the notions of agent, resource
and lacation. Agents are the active entity in the system, they access resources ard interact with other agents to
perform computation. An agent at one time resides at one location only, over time it may move from one location
1o ancther. Resources, on the other hand ., are passive entities in the system; taey do not perfurn computation and
generally are fixed to a location since their creation time.

In modcling such a system, different caleuli focus on different aspects of the system (Seal on security, Ambi-
ent on mobhility, Dx on rescurce access contrel), So. the primitives they choose and the technical approach they
adopt are all different. The differences, however, never hinder them from providing inspirations for our worle; es-
pecially, the following works have influenced us in a significant way. Ambientt), Seall) and Dal®l.

» The core of the Ambient calculus is a minimal calculus for mobility, which only supports the notion of pre-
cess (l.e. an agent) and ambient (i.e. & location plus a collection of agents located in it), Ambients are organized
into a hierarchy, where agents perform computation via the mobility ol ambicnt, An ambient moves with all its
sub-ambients . and the movement is either up the hierarchy by migrating out of its parent or down the hierarchy by
migrating into one of its siblings.

+ The Seal calculus is a miniature language designed as a model of distributed and mobile programming. The
basic notions it supports are very similar to those of Ambient, except thar ambient is called seal here, and that it
supports channels as resources. Seals are also OIganizcd into a hierarchy; but here agents perform computation by
communicating along channels with each other. Like w-caleculus, the communication is usually passing of names;
but in other cases Seal caleulus also supports passing of seals as means of scal migration. Channecls are located as
well as agents. An agent can only access resources located in the local seal or in one of its neighbouring seals.

* The Dnr calculus is an extension of w-calculus to support the notion of location. S, the agents and resources
are respectively processes and channels. T.ocations are not arganized; they simply form a flat set. Agents and re-
sources arc located. An agent can communicate names only with its co-located agents (over local channels),
whereas it can migrate from one location 1o any other location in the flat set.

Different caleuli strive for different goals in their calculi designs. Amblent calculus is intended as an abstract
model of mobile computation, and tries to reduce the primitives and notions in the formalism to a minima to facili-
tate the theoretica® study of properties inherent in maobile computation. Although Cardelli’s final goal is a program-
ming language for Internet (or wide-area network), Ambient calculus considers no implementation issues and is
still far away from a realistic programming language. This is also the case for Dr, which follows the tradition of -
celeulus extensions to distributed scenario as in the line of works of m; calculus. On the other hand, Seal calculus
is mote pragmatic in this respect. Rather than striving for minimality, it tries to express key features of Internet
programming directly, and there ia already an implemented language based on it, JavaSeal.

The zim of this paper is to devise a formal language supporting distributed programming with agent mobility,
whose design goals are tae simplicity of implementation and the affinity with the programming model used in realis-

tic distributed languages such as Obliq. Telescript, etc.
3 General Approach and Basic Concepts

Our approach of language design is different from most other works. In their approaches, a calculus for

© HEFRES AT http:/ www. jos. org. cn



INF. —HETHFATEREANHBIISET 591

concurrency, especially m-caleulus, is taken as basis; thus a {ull set of communication and corcurrency primitives is
within the formalism. In our approach. a concurrent A-caleulus-like language with resources. SL language, is tak-
cn as basis, which is specially formulated by us to meet the designed goal of Scope language. It supports only a
weale form of concurrency and provides no communication primitives; but memery-like resource is included in the
{ormalism as a basic construct.

Although it would not be difficult to extend SL language with communicction primitives and channels, for this
paper we ignore this possibility, in order that the language is kept simple and the attention mere focused.

Based on the small language, Scope language is formulated that supports the notion of agent, resource, and
acope (L e. location). Agents and resources are located in scopes, which in turn are organized ranghly intc a hier
archy, where agents move around to perform computation.

The agent in our language models very well the concept of thread in common programming languages like C
and Java; it can fork to create new thread (agent), and can issuc instrueticn to cccess variables (memory cell re
sources). Also, as two threads can not be cumbined to form a larger thread, our language does not support pro-
cess composition nperator ag in process algebra-based formalism.

Resources here are in two forms; data resource that corresponds to data variable such as integer or char vari-
able in C. and code resource that corresponds to furiction variables, The instruction, accordingly, has three types,
fetch and assignment for accessing data resource, and invocation for accessing code resources.

Scope is the central concept underlying Scope language. Like ambient and seal, it is a variant of the notion of
location. As it is an elaborated concept that will net be used until Section 5, we postpone its explanation to Section
5, where 3cope language is formulated.

Qur language is diffcrent from m-caleulus significantly. Bue it hes borrowed and extended one imporiant notion
of m-ralculus: the name. In z-calenlus. name is used to denote port. i.e. the capability to zocess a certain channel;
whereas the channel itself, which is only an empty place for communication, need not be explicitly represented in
the formalism. In Scope language, however, memory cell i a place for storing data; its cxplicit representation be-
comes mandatory in our language.

Consequently » name in Scope language appears both in construct denoting memory cell and in construct denot-
ing cepability 10 access it. We call the former a lock while the latter a key: a key can open a lock which has the
same name as its. Keys can also be passed inte function or stored as value in a lock (just like ports can be commu-
nicated as values).

In the rest of the paper. we will present the 81, language {irst. Then, based on 11, Scope language is formulat-
ed and the rotion of scope is explained. Finally, we discnss and summarize Scope language and comment on future

work.
4 SL Language

In general terms, the core of SL language is like a concurrent name passing 4 calculus with resources (It is
partially mspired by Boudol’s work in Ref. [8]), and it is imperative and based on implicit continuation passing. In
this seetion, we [irstintroduce the syntax of the language in its entircty. Then, an informal explanation of the var
ious constructs in the formalism is given. Finally . we summarize its operational semantics in terms of g reduction
system.

4.1 Synlax
The syntax of the SL langusge is defined in the following table. The main syntax categories are Expression,

Function, Continvation, Process, Rescurce and Environment.
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Synrax of SL language
E.i=zx|x:(3)|z7 . E|x! (V. E| ‘ork E'. E|x{¥)F  Expressicn

F.i=Ux)E Function
C.:=¢ |FC Continuation
P::=0|EC Process
Rii=ziy) |zl Resource
SIi=RT... FP,Q,... Environment

Like in m-calculus, the distinction between name and variable is removed; they are all names. The symbcls £,
¥ %s.. . is used to range over an infinite set .#” of names. The binders are the r in Az and the y in x7 (yJ.

In addition, we assume in the rest of the paper the tollowing abbreviations. (A)E is an ebbreviation of (dr]k
where x does not vecur free in E; w: () is an abbreviation of «:(v) where « poinls 10 a code rescurce conteining
(AYE; (% is an abbreviation of a data resource whose contents may bhe arbitrary. x! (v) and x? (y) are abbrevia-
tions of x! (v).z and r7? (y). = respectively, where we do not care about the final return value in z.

4.2 Explanation

Environment is the term in SL. language, on which the reduction rules is defined. Other constructs of the for-
malism are just components used to build an environment. In many senses, envircnment is akin to the notion of
configuration in Actor formalism!™, Below we explain its constructs one by one.

1. Key and lock

Key is denoted simply by a name in SL language; any free occurrence of name in an cnvironment is a key.
Keys are the capabilities to access resources, It is volatile data in the sense that it is commnunicable ,» dupli-
cable, and storable.

Locks are denoted by the construet 2¢}. It denotes a lock that can be open only with key x. Locks are the
memory cells that store “substence” like data or code, It is “persistent” in an environment and appears on
its left hand side,

[

Resource, Expression and Function

AS diSCuSEEd ln previous SECtiOl‘l s YEeS50Urces are eit]]er data Tesgurces or Code resSOuUrces, A. data TesS0ource » x
{y ?»is a key vina lock z¢). A code 1esource, x<F ¥, is a function F in a lock O

Although instruction is an impertant notion in our language, we don't have a separate syntax category for
it. Instruction is dafined indireetly in the syrntax category of expression. A {etch instruction, x?7(y) . fetch-
es a key, presumably =, from a lock named x and makes the substitution [z/y] to the rest of the expres-
sinn (see rule Red Ferchl. An assignment instruction, x! (3), puts key » into & lock named = (see rule
Red Asgn). An invocation instruction, z; (»), invokes a funcrion, presumably F, [rom a a lock named &,
and is ready to call the funerion with a key y as argument (see rule Red Inv). A fork instruetion, forkE’,
creates a new process P in the environment. and then P runs in parallel with the parent process {see rule
Red Fork].

An expression is something that can evaluate a value (i.e. 2 key). An expression may take several forms.,
It can be another expression prefixed with an instruction. which is either a fetch. an assignment, or a
fork. Or, it can be simply an invocation instruction , which evaluates a function call (see rule Red Inv) that
in tury reduces (o another expression (see rule Red Call). En sddition, an invovation nstruction followed
with ¢ function is also a form of expression. The function here is used to contzin the “statements” follow-
ing the invocation instruction, which will accept the return value of the invocation. Before its evaluation,
this form of expression will need a special structural transformation (see rule Struct ICP) to make rule Red

Inv applicable.
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A function is o “small” abstraction™ of expression. It is monadic, but extending it to polyadicity is not dif-
ficult. The polyadic function will be able to take multiple arguments in a single call.
3. Process and Continuation
A process is either an inactivity {see rule Struct GC), 0, or an activity that first evaluates an expression
and then uses the evaluated value to continue the “rest” of its activity, EC. The rest of the activity is
called a continuation. A continuation is either a function to he continued with another continuation, FC, or
simply a to-be-ended activity (see rule Red End), &.
4. Environment
An environment, |k, is a place where computation happens. (n the left hand side of F is 2 multiset of re-
sources; on its right hand side is a multiset of processes. Processes run in parallel to perform computation.
Kevs used in computation generally have matching locks on the left hand side of the environment.
4.3 Reduction semantics
Computation happens with the step-by-step reduction of an environment, where each step is prescribed by a
reduction rule. The collection of reduction rules constitutes the operational semantics of SL language.
To make the reduction system simple, environments are icentified up to the renaming of bound names as well
as to the following structure congruence rules.
Structure Congruence
Flr (pIFIC = Fa Ay (FO) (Struct ICP)
FO=+ (Struct GC

Then, the rules of the reduction systerm are given below,

Reduction

2P P2 (WC——3lF ¥ F (2F)C {Red Inv)
rizd b x? (W EC—xiz } F E[x/y]C {Red Fetch)
xlz? bzl (). EC—Hz{y ) EC (Red Asgn)
FlotkE! EC» + E' & ,EC {Red Fork)
Fy((AzyEYC— FE[y/2]C {Red Call}
Fx@—+-0 {Red End)

All the rules above are given in the chemical abstract machine stylel'*.

5§ The Scope Language

In this section, we first intraduce the concept of scope. The syntax of Scape language is given in its ertirety.
end various constructs in the formalism are explained informally. After that, we give its operational semantics in
terms of a labelled transition system, and specifics of the transition system are clarified. Lastly, the uses of the
language are illustrated by examples.

5.1 Scope

Scope language is an extension of SL language. The central notion underlying the exrension is that of secpe,
which is a variant of the notion of location.

750

In its simplest sense, a location is just a centre of activity’®!, or a bounded place where computaticn hap-

LY This sense is the root for many variants of the notion, and it is embodied in our concept of environment in

pens
SL language.
- After this common start, however, variants of the notion turn divergent on many an aspect; the crganization

of locations (a hierarchy or a flat set), the interaction between entities (local within one scope, or remote across
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multiple scopes ), or the form of mobility Cnobility of agent or mobility of lecation).

For the aspect of location organization. our language resernbles Ambient and Scal, where a location (ice.
ambient ar seal) is a named place consisting of a collecticn of processes. As locations are identified to processes in
these calculi(i. e. they share the seme syntzctic category), some processes in a location are indeed locations. One
lecation thus is really a composition of hierarchy of sub-locations.

In Scope language s the named place is an enviranment, which is called scope here and consists of a coltection
of processes and resources, But scope is not idemilied as either process or resource. Rather, we understand scope
10 be “substance”, which can be stored in a lock and can form a resource, i.e. scope resource.

Therefore, scopes are not directly composable here, It is only after being locked tn as resources, can they be
used in composing other scopes. One scope, accordingly, has two names assccialed with it; vne is the scope name
(the name of the place); the other is the resource name (the name of the lock that encapsulates it).

Scope as substance is an interesting research topic, involving problerns such as the storage of the substance
and the movement of the substance(i. e. scopc mobility}, This paper will not tackle this topic, for we should con-
centrate on two other significant features of scope:

= A scupe is 4 boundary . which delimits what entities (resources or agents) are inside it and what are ousside.

* A scope is a reference frame, that is, an addressing system for loecating resources inside its boundary.

In & hierarchy, the entities local at one scope or at any of its sub-scopes recursively, are 21l inside the scope’s
boundary, The boundary provides protection for these resources. To access them from outside the boundary, you
need a key for the lock encapsulating the scope. Rescurees may simultanecnsly he inside a series of boundarics.
each being the outer boundary of the nexr in the series. So there are several lavers of protecticn for them. If we are
to locate and access a resource in the hierarchy, we will need at least two things: first, & scope (one of the
resource’s ourer boundary scopes) that is chosen as the reference frame; second, a cluster of keys for all the locks
along the path from the reference frame down to the resource in 1he hierarchy.

When an agent ls to access resources, usually one of its outer boundary scopes is specified (using svope
name) as reference frame. If rone is specified, the default reference frame is the agent’s local scope. In general, a
reference frame should be a common auter houndary for both the agent and the resource.

With this addressing system in place, an agenr. if having necessary keys, can access resources located at any-
where in the hierarchy (In this aspeet, it resembles Join calculus), Therefore, the interacrions in our language are
mostly remote. When it is a data resource, the agent can retrieve data directly from the remote scope of the re-
source, When it is a code resource, the agent will exert its mobility (i.e. agent mobility). It first migratee across
the hierarchy to the remote scope of the resource, where it retrieves the function in it and starts its execution ther-
€. Then, after the function is linished. it returns 1o the original scope, resuming its suspended computation there
(i. e. the continuation).

Based on this hierarchical model, it is possible to formulate a useful Jzanguage for distributed systers as is
done in other works. However, the strict hierarchical model has sunwe problems with iz. The most important ene
of them is that the flexibility of the addressing system compromises the security of distributed systems.

On that account, this paper has not directly adopted this model as it is. We have enhanced it with both some
extensions and some restrictions in order to facilitete good programming practices that guarsntee the security of
distributed systems. The resulting model is our Scope language.

The extensions to the model are two folds.

Introspection: In a strict hierarchy, the reference frames rhat sn agent may take need to be one of its outer
boundary scope. Nevertheless, by introspection an agent may take additional scopes as reference frame as well.

Public modilier: In a strict hierarchy, 1o access resources in a sub-scope. an agent must use a cluster of keys
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10 penetrate the sub-scope. But with a new modifier public for resources, resources at a sub-scope may sift cut and
be directly aceessable in the local scope using a single key.

A scope may statically introspect another scope, so that eny agent inside the former’s boundary will be able to
take the latier as its reference frame. The reference frames hat an sgent may rake due tv this s1aiiv introspectivn
and those due to being its outer boundery are collectively called its static reference frames.

An agent may also dynamically int-ospect a scope, so that the Jatter can be used directly as reference frame by
the former. They are called its dynamic reference frames.

Usually, resources are directly accessable only in the local scope. Public rescurces, hewever, can sift through
this local boundary and be directly accessable in the parent scope as well. This sifting is transitive if the local scope
is a public resource in the parent, too.

In addition to these extensions, we have also made three restrictions.

+ An agent may dynamically introspect a scope only if the latter is a resource directly accessable in one of its
static reference freme.

+ A scope may only statically introspect what its co-located agent (that is, the scope resource and the agent
are cg-located) may dynamically introspeet.

» Within any of its reference frame (dynamic or static) . an agent may only access the resources that is directly
accessable,

The restrictions provide a kind of protection for sub-scopes inside a relerence frame. Frogrammers are not al-
lowed to open sub-scopes and to dig arbitrarily deep into the hierarchy.

5.2 Syntax

In Scope language, we keep the distinction between name and variable. Let 227 be an infinite set of variables.,

and ., & be non-overlapping infinite sets of names. We will have meta-variables, m,n€ 4", [,s€ &, and =, y,

2& &, where m,n are resource names used in key/locks and /,s are scope names denoting reference frames.

Syntax of Scope language

vetes =i |l v f Value
Ell=x|v|xz. Key
rov=kluiiiati 2. Cluster {of keys)
ELl=klr: e (), Elrl ) E| fork E.Elr: (OF Expression
F.:={Ax)E (where variables are all bound) Function
M..=F|I..F|V..F Return
Cri=@MC Centinuation
P,.QI.=0EC Process
Hii=—u,5—"u,... Introspections
BT =nl) [ndFY | n{SH) Resource
SCH)l=eR:T ... v¥P,Q,... Scope

Here, iii=n id, I i=i[I 1T, Vii=I[L T |\VIT|V.I, 1= 4 [ 4, and the binders are the x in Az
and r7 (ol
3 3 Explanation
Scope language has 11 major syntax categories, with scope as the term in the language. Below these syntex
categories are explained one by one,
1. Key, Value and Cluster
Although the construct for locks remains the same in the new language, L. e. #{}, the construct for keys,

ks ix extended subsiantally,
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There are local kevs, i, that 15, keys with no reference frame specified and thus using the local scope as de-
fauit. local keys may be denated by 2 single name, e.g. s, which is a simple key to a resource m (XD at
the local scope. I.ocal keys may also be denoted by a seguence of names connected with .7, e.g. 7. m,
which is a compound key to a public resource 4 m{ X that silts out from the sub-scape encapsulated by n
>. A compound key is still a single key: it can not be disassembicd inte multiple keys.

There are alsy zhsolute keys, that is. local keys prefixed with a ‘I..’, where [ specifies the reference
frame. Absolute keys and local keys comprise value, v, which can be passed as argument in Function calls
or be stored into or be retrieved from resources.

In addition, a local key may also be prefixed with a varizhle as in x. i, but the variable must be substituted
with value before the key can be used in computation.

A cluster is several keys srringed up in a sequence with ‘.17, By using them one hy one, one ¢an recursive-

!

iy enter deeper and deeper into the hierarchy. For example, m.aiim' is a cluster of two keys, where #' is
a key to a resonree that is local a+ the scope denoted by key m. n. As with keys. cluster can be prefixed
with ‘Z.:7 or with a variabie.
In Scope language, clusters are mostly used to implement dynamic introspection and invocation rcturn
path. For dynamic introspection, only limited form of cluster ie needed, -, i.e. clusters comaosed of ar
most two keys. Full form of cluster as 7 and ¥ are used in return path.
2. Expression and Function
The construct for expression is almost the same as in SL language . except that it must be ensured that only
keys. nut clusters, are used #s values in the expressivn. As variubles may appear in an expression as well
a8 names. a functinn should have all its variables bound.
3. Return, Continuation and Frocess
Return is ¢ function prefixed with a returi path. When an agent returns, the return path is first used for
locating the scope where the agent returns, then the furction is applied with return value as argument to
resume Lhe compuration there.
Continuation and Process are the same as in SL language.
4. Scope, Resource and Intrespections
In Scope language, resources are modified by attributes; 4 means public resouree, while { mwans private
resource. In addition, there is a new kind of resource. i.e. scope resgurce n(S(H ). The H in S{H)
means introspectians, [t is a multiser of introspections. An inirospection is of form { »v, which means that
the current scope stetically introspects the scope located by v, so that the latter may be used as a reference
frame with name { and by agents inside (e boundary of the former. Seope $(H) also has an expanded form
of eR, T, ... FEP,Q,. .., which is actually an environment with natne / zod imrospections &,
5. 4 Transitlon semantics
In Scope language, computation happens across a hierarchy of scopes. (ne step of computation may involve
multiple entities lucated far distance apart in the hierarchy. For such a system. convenience is no more possible for
us to give the semantics in a2 reduerion system. We shonld instead chanse ro present the semantics of Scope lan-
guage m terms of a labelled transition system.
To make the transition system simple, keys and clusters (i. e, éyvy V44 ,r) arc identified up to the associu-
tivity of arbitrary combinatien of *.? and ‘!.*. Scepes are ideatified un to the renaming of bound varizbles as well

as 10 the following structure congruense rules.
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Structure Congrucnce
F O (BFIC= Fr (LIFO (Struct CPS)
Fo=t Struct GO

The transition system of Scope language consists of two parts, One is a collection of ¢n-the-scene transition
rules; the other is a collectior. of propagation rules. In comparison to previous reduction system. the transition

system Is vomplicated somewhat. We car note that the nuruber of rules is duubled here,

(On-the-scene Transition

vy
edF) b ——am(Fy b FC
enlvy b --Lm(v 5k
enlv) Flbsrz(u vk
Folel)

FV()C —

Voo
FV? (2). EC — b E[o/r 0

Vie
PV (o). BC — | EC
b fork E'. EC —  E' @, EC
F o () EYC —— b E[o/x 0
FoZ = kO

OB

P b oFC

Mt

FeMC —— |- {(where M7#F)

Propagation

(Trans Inv In)
{Trans Fetch Tn}
(‘I'rans Asgn In)
{Trans Inv Uut)
(Trans Fetch Out)
{Trans Asgn Out)
(Trans Fork)
(Trans Call}
(Trans End)
(Trans Ret In)

(Trans Ret Qut)

SUH) —» S'(H) abs(e) Vin(a)

H
al bl -y

enlSCHM |, — e el ST -,
S(H) —- §7¢H)

S (HITE o S (H)) F

s

S — = S'CHY val(@)=wal(a’)

SCHY —= S'H)

aw
where S(H)—8"{H) means

(Trans Prop &)

(Trans Prop )

(Trans React)

f @ 7 a
S{H)—> — & (H}or S{H)——8 (H
Letwii=7 ! | |@, rll=w|w, 71l =]|FC{I:IFC and Wil =VI|C|cJ (J11FIC, then we will have o221 =
WAl [Wa (W0 where Wis the subkct of ¢ and W' and W are the objects of a.

v abs{a)=true if the subject W is prefixed with 1

+ in{a) =true ilf wic in
+ val(a) removes sll rin &

+ ¢change win & to w. and @in m

The translatdon function en{ | a7 I, translates the subject and the objects in « as below.
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en, 1 W=7
G I FYC W=(IIIFC
il W=¢TI
(enillLlFYC W=(¢I.,F)C
el FEWY bt =dent T W=1
v U W=siUhs>ve H
u W=siUMANi=s
W W=slUA G+v& H) MiEs
%] W=

5.5 Explanation for the transition system

In a hierarchy of scopes., computation happens with the interleaved arcurrences of actions fram different
agents. Each occurrence of action elicits a transition an every scope that is affected by it (either directly on the
scape itself or indirectly on any of its sub-seopes recursively)., The directly affected scopes are the scenes of the
action. All the scenes of an acrion comprise its effect range.

As a scope is a reference frame, a transition on the scope is actually an observation in the reference frame of
the wctivn causing the transition. Within different reference frames, we will have different observations of the
action.

A transition in Scope language i¢ of the form.

SN =8 (1)
Intuitively, it means that after the occurrence of an action thet is gbserved as event 7 within the reference frame of
SCH), scope S(H) evolves 1o 8’ (H). The cvent 7 has the following forms;

= The closed event 7. An event 7 is an ohservation of an actien whose effect range is contained by the hound-
ary of the cuarrent refereuce frarme,

* The open event a. An event « is an observaticn of an action whose effect range is beyond the boundary of
the current reference frame. @ is an expressicn of the form.

& =Wl |Wr (W W)

Within a  expression, if 7 is @, the @ is an in event; otherwisc, it is an out event.

If the transition is on the scenes of the action, it will be a on-the-scene transition, On-the-scene transitions
arc transitions where an action criginates ar destinea. All other transitions are derived from them hy propagation
rules, which are on scopes indirectly affected by the action.

In Scope language, there are eleven on-the scene transition rules. Trans Call and Trans End are observation
of actions internal to au agent. Trans Fork is observation of an action local tw the scope of the agent. The rest four
pairs of tansitions are observation of action with distributed effect range.

Trans Ret Inis the observation of the arrival of an agent at the destination scope, while Trens Ret Out is the
observaticn of the leave of an agent at the departure scope. They form a pair of ohservations on the “return” action
of an agent.

In the same way, Trans Inv In/Qut, Trans Asgn In/Qut, and Trans Fetch In/Qut are pairs of observartions
fur invecation, assignment and fetwch instruction respectively, which are interactions between an agent and a re-
source. Among them, the transitions of in event are observations within the reference frame ol (the resgurce, while
the transirions of out event are observations within the reference frame of the agent.

For internal and local actions s we could only observe closed events. For distributed actions we raay vs well ob-
serve open events., Open events are propagated up the hierarchy by rule Trans Prop a. Closed events are

propagated up the hierarchy by rule Trans Prop z. Closed event and in event can be propagated arbitrarily high in
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the hierarchy, whareas out event has a ceiling on its propagation. it can not propagate out of the innest boundary
containing the action’s effect range. This ceiling is enforced by the condition, abs(al) ¥ in(e}, in the Trans Prop o
rule.

When two complementary open events meet in a common reference frame, they will react according 10 Trans
Recact and resolve into a closed event. Two open events are cotuplementary if and only if one is an in event; the
other is an out event, and their subiect znd objects match with each other. That is, wal(e) =zal(a’).

When an event is propagated up the hierarchy inlo a new reference frame, it is observed as a different cvent,
i.e, the subject and objects of the event nesd to be translated. So we have defined a function, ¢ F*e) b, which
rransiares an event @ ahsarved within the current scope 7 to the corresponding event chserved at the parent scope

b

Finally, one thing to note is that in a distributed action only valne and continwation are passed between sce-
nes, They are carried in the expression of open events, and are usually the obiects of the event expression (in the
case of Trans Ret In/Out they mey be the subject, too). Therefore, it must be ensured that the value passed ont
of onc scene is translatable to & value within another scene.

5.6 Examples

Programming in Scope language is direct and interesting. In this section, we give two program fragments to
illustrate the stvle of programming in Scope larguage.

A Cell Tn Ref. [3], Hennessy uscs & cell eaample to illustrate programming in Do, A cell is a place {ur storing
values; channel p is nsed to put value into the cell. while g is used to get value out of the cell.

System <= Cell(x)] |F[User]

Celitn) ={usist {n)

| # g7 ()57 ()Gt o) v oret] <xi)
| = p7 (y,e)s? (x)(sr {w)l|y oaek: )

User <=l pl {h,Chlack? O gl (hdver? (rlprintl (2}

The cell has an inteznal channel s in which the value is stcred. When getting a value, the user needs 1o furnish
2 return address, which is used by the cell to scnd back the value after the retrieval from s. When putting the val-
e, the user {urnishes a new value in addition to a return addeesss but the address is only for making an acknowl-
edge 1o the user (after tahe value is updated).

In comparision with it, we give our implementation of the cell example zs follows.

Systerr —mCell ()2 ntUsery + |

Cedl(X )=} (X, 4 g{(Wec? (z).xd: 4 plAxdel (D) b

User <=tat rsiimp (@ GHmg: Q)T pin

It is obvious that gur program is simpler than the D program. The programming style is also much wore
straightforward, for the user nceds not to explicitly pass any return eddress in interaction with the cell.

A Cell Market Using D, Hennessy also implements a cell server. A cell server is a place where users could
ahtain fresh cells, Delow, we have adapted the example and implemented o cell marker where & number of cells are
adversised on BBS for sale, and a number of users bid to buy them.

Market <=, . smSCell:(vi)s. .

canilUser;d. ..
BBS{(NA) . NAbd{(Ax)z. find ; (D} b5 k.
Cell, (Xr=vciX)s 4 g{{At (. ads b plldudct (W0
¥ jobladvertise), ¢ bidder (3, ¥ starus{nacant’ ,
§ advertise (D) (5IIBES Y Gni). job? (x).x:00),
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v selection({A) (s BBS)) (NA). bidder? (x). (x.notification)! (x.win))
A b2 (LA bidder] (). joht (selection). Cromait) (m: 10
b vacant {{Az) (. notification)? Cy). y:{m,}},
A occupied{ (Ax)x. find (D)
Fiob? (x).x:0&
User; <4 al), § noti fication (wwait? ,
¥ Sind{(N) (1 BBSY? (23, (x. bid) 1 (1)
b wait{ Axd{x. status)? (y). y: 0},
b oawin{ (Ax) (. status)! (r. oceupied). xd
Ffind O (Ax) (s p) (@ (e g3 O Q) ) & prine »
In a hidding, the celi is responsible 1o selecr a winning bidder, and 1o notily him abeut the win. The winner

will in turn oceupy the cell, and make other bidders give up. The giver-ups will then re-start (o find new cells for

bidding.
6 Summary and Future Work

Our language is quite unigue in its formal treatment of the notions of resource, agent and scope, In other for-
malisms, resnurces do no: appear as independent syntactical entities. For example in Amoient, ambient is prucess
and process is ambient; but the notion of resource does not exist. In Seal, channels exist only semantically but
have no syntactical embodiment. In our formalism, we use separate syntactic entities to represent agent, resource
and scope. It brings a proliferation of constructs in our formalism and poses some challenges for the formal sys-
termn. However, as we have already sald, we are not leoking for semantical or syntactical mimmality. Our language
is intended ac a basie for real programming language. It should be able to directly represent most construets used in
programming s and not too far away from an implementzble model of programming language.

Besides the differences in goals, the basic model used in our language is distinct from other work as well. The
distinction is not so much in the unigueness of individual features than in the novelty of combination of features,

+ In our model, we have adopted the hierarchical organization of scopes as in Seal and Ambient instead of the
flar set organization as in Dr. Bul scepes in our language are not directly composable, They should first form re
sources, and then be used in composing other scopes.

+ The keys in our langnage are statically hound 10 resources . instead of dynamical bound as in mest other cal-
cuwi. It necessitates a translation function in our language to translate keys when passed between different scopes,
so that they keep referencing the same rescurce.

« Mobility in our moclel is only supperted in the form of agent mobility as in Dr, instead of loctation move-
ment zs in Seal and Ambient. It is a restricted form of mobility , but on the other hend, the absence of scope mobil-
ity makes implementation easier, as it will not need to implement code mobility. So in this respect, our model is
more conventional than cther work.

The {ormal system presented in this paper provides just a starting point for our futtre research, where there
ars many interesting issucs untouched yet. Howewer, to be short, here we just mention one of the most imporrant
thing missing from the current language: the 1ype system. A type system shall be important for Scope language.
For example, our syntax currently allows to write programs that make invocations to data resources, which in fact
have no defined meaning in our language. 1f there is a type system and type is assigned to resources and keys, syn-
tax checking would be able to detect the illegal usage.

A type system also helps in some other aspects significantly, such as ryping a neme into a read or a write capa-

bility. or typing a relerence [rame 1o restrict the resources accessable inside it, etc. Type system and some other
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issues around Scope language are the subjects we ars actively working on.
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