1000-9825/2001/12(03)03434-06 ©2001 Journal of Software % # % 18 Vol. 18, No. 3

Completely Debugging Indeterminate MPI/PVM Programs’
WANG Feng, AN Hong, CHEN Zhi-hui, CHEN Guo-liang

(National High Performance Computing Center, Department of Computer Science and Technology . University of
Science and Technology of China, Hefei 230027, China)

E-mail : {wangl,zhchen}@mail. ustc. edu. cn; {han,glchen} @uste. edu. cn

http://www. nhpce. uste. edu. en

Received October 15, 1999 accepted January 25, 2000

Abstract ; This paper discusses how to completely debug indeterminate MPI/PVM parailel programs. Due to
the indeterminacy. the previous bugs may be non-repeatable in successive executions during a cyclic debugging
segsion. Based on the FIFO communication model of MPI/PVM, an implementation of record and replay tech-
nique is presented. Moreover, users are provided with an easy way 1o completely debug their programs by cover-
ing all possible execution paths through controllable replay. Comparied with other solutions, the propesed
method produces much less temporal and spatial overhead. The implementation has been completed on two kinds
of message passing architectures; one is Dawning-2000 super server (that was developed by the National Re-
search Center for Intelligent Computing Systems of China) with single-processor (PowerPC) nodes which are in-
terconnected by a custom-built wormhole mesh network; the other is a cluster of workstations (PowerPC/AIX)
which has been buile in Nationai High Performance Computing Center at Hefei.

Key words: parallel debugger: record and replay; message passing; MFl, PVM

Debugging indeterminate parallel progrems is much more difficult than debugging sequential ones. The first
issue is the repeatability of bugs. Traditional method of cyclic debugging relies on the determinacy of the execution
procedures to locate the bugs, which mcans, to the same input, not only the results but also the execution paths
are the same in successive runs, For parallel programs, this determinacy is destroyed by the message racing which
is unprediciable due to many factors such as network delay, load balance, etc. In order to debug such indetermi-
nate parallel programs. there comes the record and replay technigue. A number of papers discussed about it and 2
few parallel debuggers implement it['~%,

Furthermore, indeterminacy produces another issue———users can not ensure the correciness of their programs

+ This praject is supported by the National High Technology Development Program of China under Grant No. 863-306-ZD01-
02-3 (BI# 863 R E B B ES) and the Youth Science Foundation of the University of Science and Technology of China on-
der Grant No. 98-1101 (HE# 2 HA K FEFH$EESL). WANG Feng was born in 1977, He is o M. 8, student at Department
of Computer Science and Technology, University of Science and Technology of China, He received his B. S. degrse in computer
science from University of Science and Technology of China in 1997. His research interests include parallel computing. parailel
prograthming environments . design and analysis of algorithms. AN Hong was born in 1963. She received her Ph, D. degree in 2000
from University of Science and Technalogy of China. Her current research interests are paraliel and discribured programming envi-
ronments and tools, high performance computing. CHEN Zhi-hui was born in 1975, He is a M. 5. student at Department of Com-
puter Science and Technology, University of Scicnce and Technology of China. His research intcrests include distributed comput-
ing and computer network. CHEN Guo-llang was born in 1838. He is a professor and doctoral supervisor of the Department of
Computer Science and Technology . University of Science and Technology of China. His current research areas include parallel al-

gorithms, high performance computing.

© 'f'I_NIH"}"IS}"’AMI'Wh’{ﬁﬁ‘ http:// www. jos. 0Tg. cn

28 F. 082 MPI/PVM £ 3-8 541044 335

even though they have debugged them many times, because they cannot ensure they have covered all possible exe-
cution paths. This is the main shortcoming of passively debugging—— users can only correct the bugs they can
find. Till now, few debuggers have solved this problem**,

In this paper, we present an implementation of record and replay technique taking advantage of the FIFD
property of communieation in MPI/PVM. Particularly, we provide an easy way to actively and completely debug
parailel programs by covering all possible execution paths through controllable replay. We have implemented our
appruach in the DCDB!, a portable parallel debugger developed at the Nativnal High Performance Computing
Center (NHPCC) at Hefei and the National Research Center for Intelligent Computing Systems (NCIC) of P.R.
Chine. The DCDB was designed to debug parallel programs that are distributed aeross a large number of proces-
sors, It supports debugging of MPI/PVM programs. Currently, it is implemented on Dawning-2000 cluster at
NCIC and a cluster of ATX workstations at NHPCC at Hefei. Our approach produces little exira time and space
overhead, and is applicable to single threaded MPI/PVM programs written in Fortran or C.

We organize this paper as follows. The next section will briefly introduce the message passing communication
models. In Section 2, we describe our implementation of record and replay technique. Section 3 focuses ¢n how to
completely debug parallel programs with the DCDB. Section 4 is a briel description of the related work. Lastly, we

give some conclusions in Section 5,
1 Communication Models

There are two basic message passing communication models'™ ; synchrenous and asynchronous.
1.1 Synchronous model

In synchronous model, the message can be communicated only if the sender and receiver are both ready. The
send and receive cannot return until the message is completely sent and received. There is no indeterminacy in syn-
chronous communication, because one send corresponds to one receive. In each execution, the same receive will
get the message from the same send. It is easy to debug such programs. But the parallelism is quite pour in com-
munication intensive programs.
1.2 Asynchranous model

Asynchronous model is much more commonly used for cluster system. The sender need not wait for the re-
ceiver to be ready. The send event can return if the message is sent ocut {blocking?} or even not (non-blacking) .
while receive perhaps does not begin yet. The parallelism is highly improved. But the determinacy is destroyed.
because the one-to-one correspondence hetween the send and receive does not exist any longer.
1.2.1 FIFO communicetion model

Let’s put some restriction on the above asynchronous model, that is, the messages should pass though a spe-
cific channel between every two processest’l. This channel is FIFO. From process P, to process P;, the first mes-
sage sent should be received first. Then. there’s no racing among the messages sent from P, to P.. Racing exists
only among the messages sent from different processes to a same receiver. The indeterminacy is reduced greatly.

Fortunately, MPI and PVM provide such model. There is a so-called “non-overtaking” rulet™ of point-to-
point commaunication in MPI/PVM.; if task 1 sends message A to task 2. then task 1 sends again message B to task
2, message A will arrive at task 2 before message B. Mareaver, if both messages arrive before task 2 does a re-
ceive, then a wildcard receive will always return message A.

Here, a wildcard receive means a receive operation that does not designate the source process or the message
tag.

© rhlERE

SRRSO hitpy/ www. jos. org. cn

336 Journal of Software HFH 2001,12¢(3)

2 Record and Replay in DCDB

2.1 Strategy

The basic idea of record and replay technique is that: record the execution traces during the first run, then re.
play it for cyclic debugging s many times as needed according to the traces. Then, the bugs appearing in the
recording phase can be repeated when replaying,

The key issue is what should be recorded. There arc mainly three kinds of recording. (1) Record the program
statuses during the execution. In order to replay precisely . users should record as many statuses as possible. But
the overhead in time and space is too much, (2) Record the content of the message received. This needs too much
time and space when the messages are long. (3} Record the message sequence. The overhead is smaller than that
of the first two methods. But it needs an extra clock, and its overhead is still a problem in the communication i
tensive programs.

In fact, from section 1. 2.1, we can see that. firstly, it is not necessary 1o record information of all messages.
Only those possibly racing messages are responsible for the indeterminacy. If there is no wildcard receive, then
there will be no message racing, Secondly, there is no need to record all contents of the message. In MPJ and
PVM., the indeterminacy is mainly caused by wilideard receives. And because of the non-overtaking rule , the wild-
card parameter of message tag can be neglected®). So we only need to record the identifiers of the processes whose
sends are matched by receives having no designated scurce. That is enough for replaying.

2.2 Implementation

In the DCDB, we implemented record ond replay technigue by wrapping calls to the communication librasy
with instrumentation reading or writing trace files. Besides the normal message passing functions, the new
wrapped library for record gets the actual senders of wildcard receives from status information and writes the ids
into 2 trace file. The new library for replay reads the trace file and simply replaces the wildcard parameter sendet
with the actual one. Thus it seems that there are no wildcard receives in the parallel programs,

The debugging process of indeterminate MPI/PVM programs is shown as Fig. 1.

Program to be debugged

I t Tastr N __ W -
[New program for replay %@E@l part of DCCB ’: :_:::: New program for record
(‘mpuel& link Compile| & link

{Executable Tor zéplay] _ Trace files
o =

Debugging part of NDCDB
Fig. 1 The debugging process for indeterminate programs

Cyclic debugping

Firstly, the DCDB instruments the original source files by replacing the MPI/PVM calls with wrapped ones,
Then users compile the instrumented programs for record and replay. After running the new program for record,
users will get some trace files. Lastly, by repeatedly executing the program for replay, nsers cen cyclically debug
their programs.

2.3 Overhead

A large fraction of the paralle! debugging community believes that perturbations to the program and the sheer
volume of trace data generated make tracing and determinate replay an impractical alternativel®’. For those tradi-
tionai methads described in section 2. 1, that is true. But for ours, it js pot the case. Because of the FTFO property
of communication between two processes, we can simplify record and replay greatly. Therefore, the extra aver-
head is highly reduced. Furthermore, the calls to wildcard receives are not too many in most MP1/PVM programs,

so the temporal overhead can almost be ignored considering the influence of other factars. The spatial overhesad is

© PEFEESSRAFITUR bt/ www, jos. org. en

I8 F. 04 MPI/PVM 42 5 40 L 2 337

just the total size of trace files that are generally very small. Some data of overhead in time are shown in Table 1.

Table 1 Instrumentation overhead (second}

Benchmark MNAS Benchmark EP NAS Benchmark IS
Processes N 8 8
Problem size 226 = §7108RA4 28 =1048575
Calls to wildcard rzcelves 14 218
Time (uninstr,) 53.483 46. 898
Time (instr. for record) 55. 026 47. 188
Time (instr. for replay) 55. 527 47. 595

3 Completeiy Debugging

There is a rule about testing in software engineering, that is, in order to ensure the correctness of & program.
testing should adequately cover program logic and all conditions in the procedural design sheuld be exercised(l.
That is to say, every possible branch of the program should be tested. This rule can be extended to the debugging
of indeterminate parallel programs ——- the correctness can not be ensured until all the possible execution paths
have been debugged. But without the cantrol to the message sequence, it is nearly impossible to exercise all possi-
ble cases because the running environment, including number of processors, assignment of processes, system load
and so on, is relatively fixed during a debugging session. Even users have corrected all the errors he found, there
are probably some potential errors that will appear under different environments.

Most of the currently available debuggers heve not considered this problem. The few tools that tried to solve
it generated too much overhead in both time and space because of the tremendous number of all possible execution
paths. In DCDB, we only record the identifiers of some message senders into the trace files. So we can easily con-
trol the message sequence by changing the sequence of the ids and then “replaying” the execution according to the
new trace files. Except the simply changing of the trace files, our method does not cause other extra overhead.

Let’s see an example. Fig. 2 shows a fraction of MFI source code srtest. ¢ written in C:

MP1_Init(Rarge Largvls
MPI-Comm _size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_ rank (MPI_COMM - WORLD, &myid);

for (G==0ji<<numprocs—1; i++7 {
MPI _recv(rbuffer, BUFLEN,MPI_CHAR.MPI_ANY SOURCE.9%,MPI_COMM_WORLD, &status);

MPF1- Finalize ()3
Fig. 2 An example for record and replay

We get the programs RC._srtest. c and RP_srtest. ¢ for record and replay respectively by replacing the MPIL
functions with the new wrapped ones. Firstly we run RC_sriest in 4 processes to get the trace files, The content
of the file for process ranking 0 is.

2

1

3

© hEp

BEARAHIFFONT hitpy/ www. jos. org. cn

338 Journal of Software HH¥IE 2001,12(9

Other files are empty because the corresponding processes have no wildcard receives, In order to completely
debug srtest. ¢, we only need to change the order of the process ranks into other 31—1=5 possible combinations
and “replay” according to them. However, there comes another problem: if the number of messages that are possi-
bly racing is larger, e. g. the number of messages is 7, we must try 71 =5040 cases ! Debugging will be impossible
when the parallel program needs so long time to run. In fact, users can greatly reduce this number after analysing
their programs. If the contents of two racing messages are identical , the order of them will not influence the exect
tion path. Furthermore, if the contents are different, but the difference does not invelve the values on which the
program will rely to determine the branch to go on, e.g. , the sender id that only influences the printing resuits
so the order could be neglected. Once more, we reduce the overhead hy only exercising the possible combinations

of those racing messages whose contents are essentially different.
4 Related Work

Although many paralle]l debugging technigues and tools have heen developed, only a few of them emphasise
the importance of record and replay. Fewer consider the completeness of debugging.

Instant replay techniquel? gives a conceptual solution to how to re-execute parallel programs, It was used in
an integrated toolkit for debugging and performance analysis of shared memory parallel programs. This roolkit
supports program trace collection and trace visualization. Event resolution in this toelkit was limited to the access-
ing of shared variables, process communication events, and synchronization events.

The optimal tracing and replay™'*"") method is applicable to message passing and shared memory programs, [t
records the message sequence in a preliminary execution and then re-executes the program by forcing each message
Lo be delivered 2s the recorded sequence, The method allows on-the-fly detection of racing messages. [t does not
comsider the completeness of debugging either.

Mdbiis a tool for an-the-fly analysis. It will test all the possible ordets in message passing pro:grams. Tke
racing messages are sent in different orders 1o see if they cause different executions.

NOPE™ is a3 NOndeterministiz Program Evaluator. It uses the nen-overtaking rule 1o simplify the record and
replay. With NOPE it is possible to uncover all possible execution paths of an indeterminate program, Firstly, all
possible race conditions are computed. Secondly, event manipulation is used to exchange the order of events and
replay steps are initiated for each comhination of messages arriving at the wildcard receives. NOPE tries to solve

the problem causcd by the indeterminacy. Its drawback is that the overhead is o much to be tolerable.
5 Conclusions

As presented in this paper, the DCDB is a debugger for effectively solving the problem of completely debug-
ging indeterminate MPI/PVM programs written in Fortran or C. Completely debugging has a significant beneficial
effect on the development of paralle] software. Nothing other than it can cnsure the correctness of the programs.
In comparison with other debuggers, our method produces much less overhead in time and space, and is easy to ke
controlled by users.

Now, the permutation of messege orders that zdequately cover all possible execution paths is generated by
users. It is somewhat difficult and complicated for the nsers. Our further goals are concerned with generating au-

tomatically the permutations by analyzing the programs with our tools.

References;

[1] Leblanc, T.J. , Mellor-Crummey, J. M. Debugging parallel programs with instant replay, IEEE Transactions on Comput-

© HEFRES AT http:/ www. jos. org. cn

I8 ¥ .M MPI/PVM 446 £ 4 Wik 339

ersy 1937,36(4) 471 ~482.

2] Netzer, R. H.B. . Miller, 8, P. Optimal traring and replay for debugging message-passing paralle] programs. In; Robert
Werner ed. Proceedings of the Supercomputing’92. Los Alamitos: IEEE Computer Society Press, 1992, §02~511.

(3l Hicks, L., Berman, F. Debugging heterogeneous applications with pangaca. In: SIGMETRICS ed. Proceedings of the 1st
Symposium on Parallel and Distributed Tools. New York, ACM Press, 1996, 41~5Q.

{4] Damodsran-Kamal. S.K., Francioni. J. M. Nendeterminacy testing and debugging in message passing parallel programs.
In; Barton, P.M. , McDowell, C, ,eds. Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging.
New York; ACM Press, 1993,28(12),;118—~128.

(5] Dieter, Kranzimueiler, Jens Volkert. Debugging point-to-paint communication in MPE and PVM. Tn: Alexandrow. V.,
Dongarra, J. , eds. Proceedings of the EURO PVM/MPI'98 International Conference. Berlin. Heidelberg. Springer-Ver-
lag, 1998. 265~272.

[6] Wang, Feng, Zheng, Qi-long. An, Hong., e a/. A parallel and distributed debugger implemented with Java., In: Jian
Chen, Jian Lu, Bertrand Meyer, eds. Proceedings of the 3let International Conference on Technology of Object Oriented
Languages and Systems (TOOLS Asia’99). Los Alamites ; IEEE Computer Society Press, 1999, 342~348,

[7] Chen, Qing-ping. Research ard implementation of parelle] debugging techniques and tool for cluster system [MS. Thesis].
University of Science and Technology of China, 1993.

[8] Lumette, 8.8., Culler, David E. The mantis parallel debugger, In; SIGMETRICS ed. Proceedings of the 1st Symposinm
on Parallel and Disttibuted Tools, New York; ACM Press, 1996, 118~ i26.

(8] Pressman, R. 5. Software Eugineering—— a Practitioner’s Approach. Fourth edition, New York: McGraw-Hill, 1999,

[10] Netzer, R, H.B., Brennan, T. W. , Damodaran-Kamal. §. K. Debugging race conditions in message passing programs. In,
SIGMETRICS ed. Proceedings of the 1st Symposium on Parallel and Distributed Tools. New York: ACM Press, 1986. 3]
~40,

[11] Netzer, R.H. B. Optimal tracing and replay for debugging shared-memory parallel programs. In; Barton, P. M. , McDow-
ell, C., eds. Proceedings of the ACM/ONR Workshop on Paralle] and Distributed Debugging. New York; ACM Press,
1993, 1~11.

REREM MPL/PVM EFMI52 ik
I¥ %k, KEE, BER

(PEBFERRE HENAEHEARE BEHRETERL, 28 &8 230027

WE. i EeRifE THLE MPI/PYM A HEA AREMAiERP Yy EM BRI A X PRI A
BT P AT AL E B R, £ F MPI/PVM & FIFO S8 % 4 b — Mg F-EH A A 650, Bk T H# ey
Tk, B2 T LR T A 85 A AT IR, Ak B R AR B . A T kA e, BT AL 4 44 ik AT R
ERRRAFF ABACLRRKERBFAGHLRHER, - H A B L2000 RF$ B (G E X Fitit X
et PR, T O %28 (PowerPC) 8 % 8 MESH FMEMRRE A —HEXEEaMEITE T (RIS
£ 35 (PowerPC/ATX) 4L 2 &

W 7K 2 K- F AW S MPLPVM

BT, TP211 NERIAE: A

LA hitp/ www. jos. org. cn

