ISSMN1006-2825 Journal of Sofiware B ¥ % B 2000,11(7).:885~59%8

An Efficient Parallel Minimum Spanning Tree Algorithm on
Message Passing Parallel Machine’

WANG Guang-rong GU Nar-jie

(Dept. of Computer Science and Technology Univ. of Scierce and Technology of China Hefei 230027)
E-mail: john@mail. uste. edu, en/grwang@263. net

Ahstract An efficient paralle]l minimumn spanning tree is proposed based on the classical Boriivka’s algo-
rithtn on message passing parallel machine. Three methods were used to improve fis efficiency, including two-
phase union and packaged contraction for reducing comrnunication costs. and the balanced data distribution for
computation halarce in each processor. The computation and communication costs of the algorithm are
O p) and L p 1,200/ p). On Dewning- 1000 parallel machine, it gets a speedup of 1Z on 16 provessors
with a sparse graph of 10 GO0 vertices.

Key words MPP (message passing parallel?, MST (minimum spanning tree), parallel algorithm, communi-

cation, disjoint set,

Given a connected » undirected graph = (V,E), T'=(V,E") is called the minimum spanning tree of G if
and only if 7" is a spanning tree of G and W(T}=‘%;w(e) is minimized. The problem of finding such a tree is
called the minimum sparning tree problern. Finding minimum spanning tree of & given graph arises in many ap-
plications such as design of electronic circuits™?, design of communication nesworks . ete.

The histroy ¢f MST can go back a: least to Boruvka™s work in 1926°) with runrzing time of O(»*) (we use
n and m 10 denote the numbers of vertices and edges of a graph in the paper), and the other two classical MST
{minimum spanning tree) algorithms are Kruskal’s algornhm-?Y and Prim’s algorithm™*:, which have a run-
ning time of QGmlogn) and OC(m +nlogn) respectively. Much progress has been made on this probelm in the last
decade. Fredman and Tarjan®) estahlished an) (m8 sy }) hound algorichm whers §¢a,m} is the number of
logarithmic iterations necessary to map » to a number less than mi/n. Gabow er af. ™ reduced it to O(mlog8(n,
m)Ys while Bernardl published his algorithm of) {maloga) where @ is the inverse function of Ackerman’s func-
ton. To the parallel algerithm, with CRCW PRAM model, Tsin ez af. ™l proposed an O(leg's) algorithm with
0(n*/log'n) provessors: with EREW PRAM model, Nath ez «l. [proposed an () {log°n’ algorithm using
00’ logn} processors s and Husngl!™ propesed an 3(x*/p) time algorithm using p processors. To the MPF
madel, little progress has been made since the nature of heavy eommunication attribute of the problem, Sun

Chung and Anne Condon™' proposed an (Y{mlagn/p) algorithm, with the speedup of 4 on 16-processor CM-5

¥ This rescarch is supported by the Ph. IN. Foundatioa of State Education Commission of Chima (HF S B - S &S,
No. 97038253, WANG Guang-reng was burn in 1873, He is an M. . student at the Department of Compuer Scienece and Tech-
mwlogy, University of Science and Technology of China. He received a B. 8. degree in computer science from the Uriversity of
Szience and Technaology of China in 1997. His research interests are parallel processing, paratlel algorithm and computer archi-
teeture. GU Nai-jie was born in 1961, He is an associate professor at the Department of Computer Science and Technology,
University of Science and Technology of China. His current research areas include communication algerithm in high-perfor-
mence computing, parallel zlgorithm and parallel processing.

Manuseript received 1898-01-21, accepred 1999-07- 20,

© HEFRES AT http:/ www. jos. org. cn

— 890 — Journal of Software #HAFFIR 2000,11(7)

machine.
We propused & parallel algorithm on the MPP modgl, based on the classical sequential algorichm of

Boruvka-.

It has a linear speedup in principle, but due to communication cost and imbalance graph distribu-
tion, we cannot get it in practice. We develup sume Inel_}‘mds to conquer the prublems. To the first problem, we
developed the two-phase union and the packaged contraction algerithin 1o reduce communication complexity.
And to the second, we discuss two new distribution methods to balance the graph distribution. The algorithm
fits well on the machine which has much less processors than the number of vertices of the graph. Our experi-
ments show that reducing communication cost gets good result while balancing the graph distribution improves
litile,

The algosithm is diseribed in Section 1 and is analyzed the improved algorithm in Scetion 2. The experimen-

tal results are given in Scetion 3.

1 The Algorithm

The parallet algorithm is based on Boruvka’s sequential MST algorithm™', so we introduce this algorithm
first.
1.1 Borovka’s MST algorithm

Giver a graph G. select the lightest weighted edges incident on each vertex.,and add the edges o the edge
set of MST. Then, each connected component formed by the selected edges of graph & is a tree. Contract each
connected part into one vartex, delete the self-loops and delete the redundant edges by deleting those edges with
bigger weight. Thus. we get & new graph G'. Apply the above process to ¢’ repeatedly, until theres only one
vertex left in the graph. Then we get the edge set of the minimum spanning tree of (7. For there are at most half
of the vertices left in the graph after one iteration. the algorithm can be finished in at most [logn | iterations,
Hence, the complexity of this algorizhm is

o(n+)+ { 2] 4.) =00,)

Tlog 1

1.2 The parallel algorithm

On the message passing parallel machine, we can parallelize the above algorithm based or the following
idea. First, we distribute the vertices of the graph evenly among the processors, sach processor finds the light-
est weighted sdges incident on every vertex belonging to it, then, compute the connected components of the
graph formed by these edges . and contract each connected component into one vertex. If there is only one verrex
left, we have found the result, otherwise, repeat the above procedure. Now. we give out the formal descripton
of the algorithm.

Algorithm 1. Parallelization of Borivka’s MST Algorithm

Input. ‘The weight matrix w of connected undirected graph €5
Qutput, The edge set of the minimum spanning tree of ¢
Begin

() T=J

(2) While |T|<n—1 Do
{2.1) For each processor PE, Par-Do
For each vEV (G} and v in PE, Do
key v]e—wo / % key[v] is the lightest weight of all edges incident on v =/
rlv]—v /% (er[v]) is the lightest weighted edge incident on v * /

© rhIEREE

CRAEFTTE hitp/ www. jos. org. cn

EEAEF EAAARAON LS S HGRERWE R — 891 —

Init-Set (v)
Endfor
Endfor
/% find connected part * /
(2.2) For each processor FK; Par_Do
For each w € V(G) and « in PE; Do
(1) For each v& adj(u) Do
If wlusw]<key(x) Then
kc’y[lf]'_'w[um]
nlul<v
Endif
Endfor
() T T u.nlu]}
Synchronize
(iii) UnionCu,2[u])
Endfor
Endfor
/ # conrtract the connected part * /
(2.3) For each processor PE; Par_-Do
For each u € V(G) Do
If Find {2} 7w Then
For each v€ VG in PE; Do
(i) If Find(u)=Find{(z) Then / » self loop * /
Ser_Valuve (o[Find () [Find(w)], 00) ©
Continue '
Endif
(i) 1f w{Find<e) vl wlu,v] Then / # redundant edge = /
Set - Value (w{Find(u),Find (v}], wla.w)
Set_ Value Cew[Find Cv¥,Find (a1] el v])
Endif
Endfor
Endif
Endfor
Endfor
Eundwhile
Lind
The union prucedure i1 Step 2. 2 (iii) is a paralle]l version of serial disjoint set union operation?, and so is

the find operation. So, when two parts that are not in the same processgr are unioned by the procedure, it

+ Set— ValueCw(z]{v],%') is a procedure that compares the values of wlz][y] and w'. If w[z][v] is bigger, set it to

w'. In the case that w[][v]is not in the host processar, send it fo the processor which wl[x]{y] belongs 1o, and do the same

thing.

EBEEPEIIAOT https/ www. jos. org. cn

— R42 Journal of Software HHFIH/ 2000,11(T)

requests thet one processor should ser (or ger) the parent value a vertex that is not in the same processor. It
does so by sending the value {request) to that processor. waiting for the acknowledgement (answer) message
from that processor, This intuitive implementation mechod seems easy, but the waiting provess may cause dead-
lock in practice. So, we use the two-phase union procedure that will be given in the next section when we write
the algorithm. but while analyzing the running time complexity » we still use the intuirive method w inake analy-
se§ easy.

In the contraction Step 2. 3, when a processor wants to set the new value of an eiry of weight martrix w,
while the entry is not in the host processor, we must send the new value to thai processor. Wainng for the ae
knowledgement message has to be applied to make sure the value reached its destination and for synchroniza-
TIOL.

1.3 Runniag time

We'll analyze the computation and communication complexities separarely.

» Computation complexity .

First. consider the compuatation complexity of one iteratien. Assume rhe gpraph has » vertices. Swep (2.1)
can be [inished in 0’/ p) time to initialize the value of key, mand iuitate the set of cach vertex. Tn Step (2. 2);
(1) needs (J{n) time to be finished; (ii) can be finisred in a constaut time; {iii) can be finished in no more than
(2a) time tn fact. for we must have more find operativns than init-set operations. define f to be the number of
find operations. and the average 1ime of an operetion is OUog a4 spmn/ pI1). So Step (2. 2) can be finished in O
(2%/ p) time. After that, the find procedure has been execuled on every vertex of the graph, so, all the find pro-
cedure eailed in Step (2. 3) can be finished (u a constant time , thus we know that Step (2, 3) can be finished in
(2 (u*/) time.

To the further iterations, sssume that the graph is still evenly distributed among the processors after the
£th iteration, and consider thie worst case alter the 4th tteration s in which all vertices converge into ane proces-
sor PE,.. For there are al most #/p vertices in onc proeessor » we can use serial Borivka’s algorithm to compute
it. 50 we could get the complexity of the algorichm,

Fopt 242 z 73
ol 1 (n/2)° F(H/c[)i%-”) - O((’L) } — O/ . (2
. P I b4 2

« Communication complexity

For the commumwarion cost, we still consicer the complexity of one iteration. Step (2. 1) requires no com-
munication, I Step (2. 2); (1) needs no communication; using the standard pointer jump techniques, {ii? can
be finished in a consiant time of communication; (i) requires O((+1.logp) " (Hor we define only those ver-
tices with minor label which can be used as parent . there must be no cycle among processors) time of communi-
cation. So, Step (2. Z) can be finished with communication cost of O, -+, nlogp/#). And in Step (2. 32, for
there are a1 most half vertices being used as leader of set, so, at most half of all tae values of matrix 1o are
changed. In the worst case, they all require communication, the communication cost would be (t,+z,)n" /2.
So. the communication complexity of one iteration 1s QU+ LIRT P

For further iterations. ese the same analysis metbod as Eg. {Z), and we can ger the communication com-
plexity of the above algorithm;

()[(i, rtu‘)(—FJFZP

i logn 1

Now, we can sce that both the computation complexity and the communication complexity of the above al-

nt IR .
it) | <Ot 1)w/). (3)

gerithm are (n?/p). We get a lincar speed-up.

© HIEERES AT hip:/ www. jos. org. cn

EAE B EBL RIS AN R kR 893

2 Some Improvements on the Algorithm

As we have mentioned in introductions the major abstacles 1o the algorithm are communication cost and im-
balanee data distributien.

We know that in the distributed memaory environment, the startup time {¢) of a transfer is much bigger
than the time 1o transport a word (£, through the nctwork. So, to reduce communication time, thus ro
transfer as much dsta as possible in a single transfer step is a good method to improve algorithms® performance.
We give two-methods based on this idea: one is two-phase union, which reduces the factor of #in the union step
from nlogp/p to logp (but increases the factor of £y, from nlogp/p to nlogp); the ather {a packaged contracrion
which reduces the communication cost of contraction from (& +t.dn'/2p to tp+run*/dp. In practice, we found
these methods improve e algorithm’s performance greatly.

To the imbalance data distribution . we give out a practical uscful algorithm. We know, in practice, people
usually name the vertices by eyes or by graph traveling algorithms. Both eause the connccred vertices to be
named adjacently. 8o, we give out two distribution methods to reduce data imbalance as computation goos on,
But we found these methods contribute only little progress on the algorithm’s performance. and we’ll discuss
the reason later.

2.1 Two-phase union

We first describe the union and find algorithm

Algorithm 2. Scrial Union Algorithm

Union e o)

Begin

Il Find (2)7 Find(¢) Then
If Find ()<< Find(2) Then
parent [Find (v}]+ Find ()
Else
parent [Find (2)]=Find ()
Endif
Endif

End

Algorithm 3. Path Compression Find Algorithm

Find ()

Begin

If ==parent{#] Then
parent #)= Find (z)

Endif

Return parent[n]

Fnd

In distributed memary enviranment, when PE, wants to get parent value uf vertex & while # stands in PE,
(i), PE. must query it ‘rom PE, 2nd wait for the answer from PE;, which cavses twice communication, and
the same number of transfers acenrs when PE, wants 1o set the parent value of #. for it must send the new value
to PE; and wait for an acknowledge message fram PE; ta assure the value has reached its destination. And a

more serious problem is that this straight lorward method may cause a dead lock when there exists a request

© HIEERES AT hip:/ www. jos. org. cn

®94 — Journal of Software #HAEFH 200,117

¢hain among the proccssors. Although this could be avoided by adding query while waiting, it is srill a rime
costing procedure. So. we introduce a new two-phase algorithm to seperate local union and inter union.

We give a brief description of the procedure. Give a full parent array parent [0,1,....2—1] to each pro-
cesscr, @nd use serial Set-Union algorithm in each processor to loeally find connected part, and union of the con-

nected part by union of parent, 71)r0—| v Purénteg [1]1...., parentsr

amipe 1 “[)1/3‘)" 1] respectively. This

o ip U s

could be implemented hy applying the serial union procedure 10 parent array two by two, thus we can zet the fi-
nal connected part of the graph. Assume the processcrs are hypercube ™ connected . we can achieve the final re-
sult in logp steps. So the communication complexity of Step (2. 2 of the parallel algorithm is reduced to
OCtlogp +tandn/ p). The detailed description of the 2nd phase of the pew nnion algorithm is.
Algorithm 4. Parallel Union Algorithm
Parallel Union (a .z
Begin
For i—=0 To logp—1 Do
/ % i is the binary representation of current processor numbeyr * /
peer+— label of the processor that differs enly at /th bit from rum
Send (peer. parent, #)
Recv (peer. tparent, »)
For j=0 Ton—1 Do
Union(parent[;. tparent[;1)
Endior
Endfor
End
As an examples in Fig. | there are 8 processars thet are hypercube connected, we can finish the job ir 3 i1-
erations. Though we have to send extra data than what we de with the original algorithm, it is wor-h the cost to

reduce coefficient of ¢ from OG1) w OClagp).

101, 11
A 7
A i
001 4 1
“ 100 % i
e 4
e

[AEE—
000 010

Fig. 1 Hypercube with 8 pricessors (all to all communication could be
finished in 3 steps: lst: 000-001 01¢-011 100-101 110-111. 2nd: 000-
010 050-011 106-110 101-111, 3rd: 000-1C0 001-101 ©19-110 611-111)
1.2 Packaged coniraction
Now. let’s turn to the contraction procedure of the algorithm. Tn the straight forward algorithm, the com-
munication cost is (.+£,.02%/2p. This is exiremely large. The big coefficient of ¢, is caused by the fact that a
processor requests the value of parent immediately from other processors once it cannar find the value in itself.

To reduce the cost. we stere all the data sent to a processor to a specified buffer, send the buffer only after we

« The procedure can be applied for machines thut are not hypereabe connected without any change , using the standard em

bedding techniques- 241

© HIEERES AT hip:/ www. jos. org. cn

IRE F EFLERA AN LG HEE AR EE — 895 —

have collected all the data. So. each processor sends at most p-- 1 packages in ane iteration. That means, the
cost of 4 is charged at most 5 times in cne iteration, which is far less than »%/2p.

Farther more, we can still reduce the factor of £,. For there may be redurdant-edges herween two contract-
ed vertices. thus the weight value in the weight matrix w may change multi-times. and some value may come
from the same processor. Sc, instead of sending them separately, we can contract them in the host processor
first and then send a single value, although this will cause an increase of computsation about #. but it can reduce

the coetficient of ¢, from #*/2p to n*/4p.

Table 1 Running time of different contraction methods (ms)
Method Random graph d=13 Adjacent graph =3
4 g 16 4 8 18
Urigiona. contra 186. 94 95, 21 51, 81 125.13 56. 18 38. 84
Packagrd contra 123. 51 67.23 395 111.53 680, 2 35. 6

Table 1 shows the experiment results, Random graph and ad-acent graph are two graph types we wsed to
test the algorithm, Random graph means that every vertex is rendomly connezcted to other vertices, Adjacent
graph means that it is mcre probable an edge exists between two vertices that are named adjacently than those
are named separately. This is more factual {for asual graph named by eyes or by graph travel algorithm, hoth
will cause the case.

From the table, we can see (hat the packaged contracrion method does improve the algorithm’s pecformance
greatly, especially for the random graph. The reason is that there are more communication requests for the ran-

dem graph than those for the adjacent graph, which we can see in Fig. 2.

12

e Adijaganiat, ddinbritsd
vl ; , edintvi
teonL Arliacont . distrils2
| st TSN — o adljsacernat, olimbilaE
— Fcarvalerren, cdistwibad
zuoo | Feanclom, distril2
Btzarwclersny, «disteibal¥
GO
AOOY
2O
(19 O 1 ()

e percent of computation. 3 communication time
Fig. 2 Communication time

From Fig. 2, we can see that despite ¢f the disrributicn method, the communication time of random graph
is much bigger than the adjacent graphd.
2.3 Distribution methad

The intuitive graph distribution methad is distributing the graph serially, that is; vertex 0,1,... yn/p—1
on PE,, vertex n/p.n/p31.....2a/p—1lon PE,,..., vertex {p—1dnfp . (p-10n/p¥rl.....n—1uon PE, .
This distribution method will cause an imbalance data distribution for we know that when we union twe connect-
ed parts, we choose the one with minior parent label as the unioned parent. This causc all the vertices to con-
verge to the processor with minior label, thus may cause the dats imbalance distribution among the processors in
the later steps of the algorithm. ’

Tc avoid this imbalance. we distribute the graph cyclely. that is: vertex 0un/p.... . (p—1dn/p on PE,,
vertex lan/p+1e.. . (p—1In/p+1on PE ..., vertex u/p ~1.2n/p—1+...sn—1 on PE, |. By this

© HIEERES AT hip:/ www. jos. org. cn

866 Journal of Software #H4FE 2000,11(7)

method, the graph is still balanced when the algorithm is nearly finished. But in practice, we found it improved
the random graph only, while to the adjacent graph, it gave even worse effect. We analyzed the reason and
found that to the adjacently graph, the communication cost increased greatly with the cycle distribution method.
Since we always distribute the adjacent numbered vertices to different processors, but it is more probable for
them to be in one connected part, it is obvious that the communication cost will increase. So we still need a bet-
ter method to balance it.

We develop the third method. Here. we still distribute the graph as what we do in the first method, but
make some change tc the union procedure, instead of choosing the one with minior label as new parent, we
chouse the one with minior value of a function of vertex label to be the new parent, and the function is f(x)=
(x mod p). For those with the same return value, we still chcose the one with minior label to be the new par-
ent. Thus we got a solution to the distribution problem.

In Fig. 3 and Table 2, we give a comparison of data balancing and computation time of three distribution
methods for the random graph and the adjacent graph. From the figure, we can see that the random graph using
the first distribution method is very imbalange . so the computation time is much higger than the others as Table

2 shows.

----------- Random, distribl
oo, Randorm, distrib2]
———— Random, distrib3 H

Adjacent, digiribl

HU — Adjacent, disirib2
Adjacent, distrib3

'

Q 20) a HU tad) itun

& percent of computation, y: percent of imbalance
Fig.3 Imbalance in the distribution of vertices among 16 processors

Table 2 Running time of different distribution methods (ms)

Method Random graph d=3 Adjacent graph d=3
4 5 Lo 4 B 1%
1 123,51 §7.23 37.5 103. 8 54,15 28.57
2 111. 33 60. 2 35.6 106. 33 57. 85 37.34
3 111.1 58, 05 33. 14 104. 64 53.9 33.15

With all the above improved methods, we can reduce the communication cost from O((, +t.)a%/p) to
Ot pttendn/p).

3 Experimental Result

We measured the total running time of our algorithm on Dawning-1000 parallel machine, using the two-
phase union. packaged contraction, and the third distribution method. for random graph znd adjacent graph
with different degrees, The results are given in Figs. 4 and 5. From the figures, we can see that we got a
speedup of 12 on random graph with an average degree of 3 on 16 processors, and the result differs a lirtle for
different graph types and for the graph with different degrees. This is much better than any distributed algo-

rithm ever known!!-,

© HEERERKLEIF hps/ www. jos. org. cn

AR F ENBAE TN EN TSRS EARE R 897

Time {ms) —e— Random graph o 1.5
A —a— Randorm graph o—3
140 —a— Adjacent graph d=2
—a— Acdljacent graph d—3
H00 F
200
100+
] e T o cnsson:

Fig.4 Running time of the improved algorithm

Spheedup

32 4‘

—s— Random graph d=1.5
24 | —=— Random graph d—=3
e Adjacent graph d—:

6 s Adjacent graph =3
5 1 H

B Processors
L P B # i6 3
Fig. 5 Speed up of the improved algorithm
The computation results using 1 and 2 processors are given by litear probing because we cannot get it for

memory constraint, But we still draw it for the consecutive of the graph.
4 Conclusions

The message passing model parzllel machine is developing rapidly these years, but programming on it is dif
ficult, and how to improve its efficiency is more difficult. We give an effirient MST algorithm on such model
analyze its efficiency and the slow downs. give an improved high-efficiency algorithm and get good result. The
computation and communication complexities of the algorithm are Q(x?/) and O ptt.n)n/ p) respectively.
We got a speed-up of about 12 on 16 processors for the sparse graph with the average degree of 1.5 and 3. Qur
agorithm is suitable for many models of machine, such as mesh linear-array, hypecube etc.

The minimum spanning tree prahlem itself is very important. We give ar (0(n*/p) algorithm on MPP ma

chine. The speed-up we got is the best for this problem on MPP machine. -
References

1 Lormen T H, Leiserson C R, Rivert R 1., Introduction to Algorithms. Massachuseits: The MIT FPress, 1890, 77 ~8§]

2 Boritvka O, O Jistem problemu minimalnam. Prace Mor. Prirodoved Spol v Brng (Acte Societ Scient Natur Moravicae),
1926,3:37~358

3 Kruskal J B. On the shortest subtree of a graph and the travelling salesman problenm. In: Proceedings American Math So-
ciety, 1956.7(1) 48~50

¢ Prim R C. Shortest connection networks and some generalizations. Bell System Technology Journal. 1951.B. 6(6): 1389~
1401

5 Fredman M L, Tarjan R E. Fibonacei heaps and their uses in impreved network optimization algorithms. Journal of ACM.

1987,34:596~6135

© HIERRESSAHIIFTR http:/ www. jos. org. cn

-— ROR — Journal of Software R BFI| 2000,11(D

6 Gabow H N, Galil Z, Spiencer T ¢t af. Efficient algorithms for finding minimum spanning trees in undirected anc directed
graphs. Combinatorica, 1986,6:109~122

-a

Bernard Chazelle. A fast deterministic algorithm for minimum spanning trees. In: Proceedings of the 38th Annual Sympo-
sium on Foundalion of Computer Science. 1997, 20~22
¥ TsinY H, Chin F Y, Efficient parallel algorithm for a class of grarh theoretic problems. SIAM Journal of Computer,
1984.13(3>:580~590
9 Nath R, Maheshwari 8 N. Parallel algorithms for the connected components and minimal trec problems. Informetion Pro-
ceedings Letter, 1982,14(¢1).7~11
10 Huang M D). Solving some graph problems with optimal or near-cptimal speedup on mesh-of-tree problems. Tn: Proceed-
ings of the 26th Annual. IEEE Symposium, Portland, 1985, 232~240
11 Sun Chung, Anne Condon. Parallel implementation of Boriivka’s minimum spanning tree algorithm. In: Proceedings of
[PP$’06. Hawii, 1996, 302~ 308
12 Cheng Guo-tiang. The Design and Analyses of Pacaliel Algorithm. Beijing; Advanced Education Publishing House, 1994.
30~-32
13 Vipin Kumar, Ananth Grama, Anshul Gupta et af. lntroduction to Paralel Computing. San Francisce: The Benjamin/

Cummings Publishing Conmpany, 1994, 45--49

EHBREFITI LN BRORMERME E
TE% B

(FEMEEARETHUMEEAR HI 230020

E A T4 Bort vka $ AR RSB Lk S0 T — M SR I ATAL 8 B Ak e RAOE AR
HAERRAIFFTERRBATLEOR R PR B FB IO MBI F R A VBT, B S HBES
ey hRREMEBOH AT IH. LA NP ARLLE SN S QW' /p)de Oespttwndn/p. EE X
SI000 AT AR LR ERARE, o FA 10000 AALGHEE BT 16 4AF S 6B H ik A 12

KA MPP (message passing parallel), MST (minimum spanning tree) . § #7 £ i, 8 4%, 4F % B /5 .
EESES IPI0)

© HIEERES AT hip:/ www. jos. org. cn

