ISSN1000-9825 Journal of Software ¥ & ¥ 8 2000,11(7):863~—~870

A New Methodology for User-Driven Domain-Specific
Application Software Development’

LI Ming-shu

(Lab.cf Computer Science Institute of Software The Chinese Acvademy of Sciences Beijing 100080

E-mail: mingshuf@ox.ios.ac.cn

Ahbstract This paper presents a new methodology for application soitware development, named as “user
engineering”. It is a user-driven domain-specific application software development methodology based on com-
ponent-based software architecture, strengthening driving effect of users to make software development as a
detailed definition process rataer than a coding process only. It indicates an effective way to meet increasing
application sofrware requirements.

Key words Software engineering (SE), requirement engineering (RE}, user participation. component, soft-

ware architecture, reuse, user engineering (UE).

The term of “SE (scftware engineering)" was named at a 1868 NATO (North Atlantic Treaty
Organization) Conference in Garmiseh, Germany!], and a set of techniques for software development was intro-
duced to combat the “software crisis”™.

However, the growing size and complexity of systems have revealed many shcrtcomings of existing soft-
ware engineering practices. This in turn raised interest in component-based and architecture-driven software de-
velopment ¢!, Components are large-grain functional units of system and architectures are blueprints describing

system composition. Some related researches include module interconnection languages ., module interface
] [5.8]

specification and anzlysisH? ('], architecture description and config-

» megaprogramming®®, software generators

L&.8]

urziion™*!, Polylith software bus™™, commercial off-the sheli™, and domain-specific software architec-

M2151 The shift toward developing systems from components has been more evoluticnary than revolurion-

Tres
ary. It has its roots in accepted architectural principles such as layering, modularization, and informatien hid-

ing. Bur it also introduces its own principles and concepts and presents new challenges.
1 Seftware Engineering, Requirements Engineering and User Participation

SE is the application of scientific principles to"*s (1) the orderly 1ransformation of & problem into a work-
ing software soluticn, and (2) the subsequent maintenance of that software through the end of its useful life.

People and projects that follow an engineered approach to software development generally pass through a series

» This research is supperted by the National Natural Science Foundation of China (E & B #£ Bl 22 5 4, Nos. 69773023,
£9896250-3). LI Ming-shu was born in 1966, He is a research professor of the Institule of Software. the Chinese Academy of
Sciences. He received a Ph. [}, degree from the Department of Computer Science and Engineering at Harbin Institute of Tech-
rology in 1993, His current research interests are software engineering in particular requirements engineering and component-
based software technologies, real-time systems and embedded operating systems, Internet/Web technology and applications,
software quality and SE standards, intelligent agents and multi-agent systems, distributed artificial intelligence and cooperative
problem sulving.

Manuscript received 1999 05 12, acccpted 1000 10 29:

© HIERRESSAHIIFTR http:/ www. jos. org. cn

864 — Journal of Software #HAFFIR 2000,11(7

of phases: software requirements. preliminary design. detailed design. coding, unit testing, integration testing.,
system testing. delivery, production, deployment, maintenance and enhancement. They can be mainly divided
into five steps: requirements, design, coding. testing and maintenance.

The most important step in software development is to analvze, understand, and record the problems that
the users are trying to solve, i. e. , hew to acquire the requirements from the application domain, especially
from the end-users, and how to describe and analvze them completely and exactly. Reguirements describe what
the users want from the software. They should be helpful and understandable to end users, serve as a basis for
design and testing, be suitable to the application, and encourage thinking in terms of external and not internal
system behavior-'*). Most faults found during testing and operztion result from poor understanding or misinter-
pretation of requirements. Analysis faults are expensive because it costs 100 times more to correct faults found

[18]

after deiivery than during analysis''*!. In spite of the progress in analysis techniques, CASE tool support, proto-

typing s and early verification and validation techniques, software development still suifers from poor require-
ments acquisition and analvsis!™,

In response, the field of RE (trequirements engineering) has experienced a sudden growth spurt in 1990s,
RE is the science and disciplire concerned with analyzing and documenting software requirements. It involves
partitioning system requirements into major subsystems and tasks, allocating those subsystems or tasks to soft-
ware, and transforming these allocated system requirements inte a description of software requirements and per-
formance parameters through the use of an iterative process of analysis, design, trade-off studies, and
prototyping 1.

User participation in the RE process is hypothesized to be necessary for RE success!®. A considerable
amount of empirical research on the relationship between user participation and software development success
has been conducted, Furthermore, user participation and influence are expected to increase the likelihood of user

acceptance of the solution and of improved system quality %,

Especially due to the increasing complexity of
organizaticnal life, it is difficult for analysts alone to design a system that will mect user requirements, and
therefore user participation in system development is critical. In addition, the lack of user participation can lead

2711]

to “many faults and economic disadvantages and is considered to be ar least partially responsible for consider-

able increase in the cost of some systems development ®', That means we have te move our attentions to the
end-users themselves in application software development.

Recently, the competition among those famous software companies in the world has shifted focus to appli-
cation software markets. The essential geal for some of them to launch & grueling drive on midware is applica-
tion software systems. All of them have to closely integrate with application domains. Tt’s thus clear that both
trends of research and software industry ask z definite requirement for users to participate in the development of
application software systems.

An effective way we think tc meet increasing application software requirements is strengthening the drivirg
effect of users to make software development a detailed definition process rather than a coding process only.
Consequently, this paper presents a novel idea of user engineering methodology for development of user-driven

domain-specific application software based on component-based software architecture.
2 Why a New Methodelogy and What’s in a New Name?

2.1 Why a new methodology?
A software development methodology can be defined as ¥, (1) an integrared setr of snftware engineering

methods, policies, procedures, rules, standards. techniques. toals, languages, and other methodologies for

© HIERRESSAHIIFTR http:/ www. jos. org. cn

FRS M P L EOEGANE R RS AHF - BGD —

analyzing, designicg, implensenting, and testing software and €27 a set of rules for selecting the correct

methodology . process, or tools for use. Methodologies to support software development appeared in great num-

ber and variety in the past, such as “stepwise refinement”™*?!, “structured programming™®!, “logical construe-

tion of programs "1, “structured analysis and design™™®), “principles of program design”®”, “objcct-oriented

- r |
17) "2, and sc on.

methods ™", “formal {mathematical} methods “plug-and-play

For many years, the acquisition of & new compurter-based system was a significant one-zime organizational
investment that replaced entirely marusl processes. As a result, we could talk about such things as “the
system” (application software), and “the customer” (user}, with the assumprion that the application software
was to be specilied -0 meet the needs of the user and that the reguircments could be “elicited ™ from the user and
specified on paper. Today. things are far less simple. Now we develop “application™, “features”, “services”,
and even “applets” that run on top of information infrastructures and cnhance existing systems. The user often
becomes a user {customer)} only after a shrink-wrapped product has been shipped. Conlractual development is
a0 longer universal. and software development has therefore become parily services provision or iutegration,
and partly user (customer) product design.

In addition, a basic cognition can be achieved in an application software development. {1) the (artificial }
software system should be bzsed on the current (human) system. and better than the current system; (2) each
user clearly knows what things he (she) should do every day and can give a clear illustrations (3) cach user
clearly knows the relationships with other user (s): (4) almost all the users do nos know exactly about what
computers can do for them and what they should ask computers to do [or thetn. Thar means the user (s) czn do
and have 1o do many things for the soltware developmernt, but not evervthing.

These changes introduce exciting challenges to traditional SE practice and research. We can na longer as-
sume the existence of a user with unguestioned legitimacy, but rather need to talk in terms of a variety of stake-
holders; and can no longer assume groundless developments of systems and their "insertion” into an enviran-
ment, but rather must deal with requirements for evolving systems. And as applications becoine mere customiz-
gble by users or administrators, sotme of the development pracess hecomes delegated to communities of users. A
new methodology for application software development should be discussed to meet such a challenge. User En-
gineering (UE) in this peper is ‘ust an attempt.

2.2 What’s in a new name

The name “User Engineering (UEY* means a new branch of traditional SE, evea not everybody will agree-
that ‘he epithet “engineering” is ceserved. Can one “engineer” user {s), when user (s) is (are) only the
customer (s} of an application software? Scme people may ohjest to the connotations that the rerm
“engineerig " suggests. Acrually UE i not about the engineering of users themselves, but about the systematic
production and manipulation of user requirements within a professionally responsible epproach to application
softwere development. By using the term “engineering”, application software will be deveioped according to
sorne user-driven engineered approach.

LE lies at the intersection of several previously existing fields without being a folly-fledged vart of any of
them, such as iraditional SE and recent RE, HCI (human-computer interaction) , CSCW (computer supported
cooperative work) and AT (artificial intelligence),

One of the most impertant concepts in UE is user participation, which can be defined as referring to the be-
haviors and activities tha: the users perform during the sofrware development. The other similar term is user in-
volvement™ ', which is defined as referring 1o the subjective psychological state of the users, and consists of
“the importance and persona! relevance thar users atrach to a particular system or information system in

general”. In this paper, the concern is with user participation.

© HEFRES AT http:/ www. jos. org. cn

— 836 — Journal of Software PSR 2000,11(7)

In a sense, a user can be taken as an object or an agent. However. we only pay attention to the actions
made by each user and ignore who is who. So we can apply object-oriented technologies and component-based
software reusable technologies to reach 2 consistence between the problem description space and the problem
solving space by some reasonable transfer. End-users {(customers) have been the actual designers for application
software systems. The dual identities of zn end-user to be a designer and a user for an application system can be
integrated, i.e. , end-users have finisaed the development of an application software system as soon as they fin-
ished the problem definition process. As the action made by end-users in the above development 1s active, we
call it “user-driven”. Almost all the terms in the traditional SE life cycle model can be continued to use, reguire-
ment representations of end-users have, however, been used through all steps in the development of application
software systems. The description and analysis for user’s requirements have been entrusted to a new implication
in the development of application software engineering. This kind of user-driven software engineering can he
called user engineering. The key points of UE are emphasizing the effective participation of end-users in the de-
velopment of application software systems, and using and integrating all current techniques, technologies and
industries results.

Besides user participaticn, the cther important aspects ¢f UE are domain analysis (i. e. , analyzing the com-
mon features and their variations zcross the current and [uture products in the application domain) , softwzre ar-
chitectures {i. e. , defining the high-level partitioning of the software into components) and component-based
software reuse (i.e. » organizing the design of each compenenrt using the commonalties and variations identified
in the domain analysis).

2.3 Domain analysis

Domain analysis is seen by some in the reuse community to be a key process {or achieving systematic and
large-scale reuse. However. the success of a domain analysis is largely dependent upon how well the domain
analysis process is carried out™?!, Domain analysis was first defined as “a process by which information used in
developing software syster is identified . caprured, and organized with the purpose of making it reusable when

creating new systems "%

. It entails scoping the domain, gathering the relevant product information, identifying
and classifying the features, and &nalyzing their commonalties.

Domain analysis is similar to system requirernent analysis, but the result of this analysis . which is a domain
mocel, is more generic and more oriented to real world processes than software system requirements. Domain

models***

deseribe @ real world situation in terms of entities that produce and use informarion, types of the in-
formation, infonmation flows among entities, responsibilities of encities and operativnal scenarios. For a well
understoud domain, the domain model can be created prior o implementing systems. But [or unexplored do-
mains , we may need to implement one or more software systems before we can build 2 domain model.

rs6:371, Qrganiza-

The typical domain analysis methods in literature are Feature Oriented Domain Analysis
tional Domain Modelingt™’, Ohject Modcling Techniquest™, Shlacr Mcllor Mcthod!'®!, industrial methodst!-
and so on.

2.4 Software architectures

(43441 The architeeture is described using four

The description of an architccture requires different vicws
different views: (1) the ohject view provides the logical view of the architecture described objects and their rela-
tionships; {2) the layered view describes how components are organized in a hierarchy of layers, each one pro-
viding a well defined interface to the layers above it; (3) the task view analyzes and describes the concurrency
and synchronizatian aspects of the architecture; and (4) the scenarios describe interactions hetween external ae-

tors {e.g. . the end-user) and the system components, The steps for mapping domain models to architectural

representations include identifying the application layer subsystems, extending the object madel, defining the

© HIERRESSAHIIFTR http:/ www. jos. org. cn

FUS AP L BTSRRI L Sk — 867 -

layered view and the task view, and developing the scenarios.
2.5 Component-based software reuse

A component means o fragment of a software module—— a piece of a program, a subroutine. an object,
... one ur more sentences expressed in any language™ %", (eneralized cemponents are not specific code frag-
mentsy each conrains formal paramerters and structures thzt allow it to be systematically modified to become any
of a possibly infinite set of specific components, In this sense. generalized components transcend physical ones.
What is impossible in the world of pliysical parts is nstural and appropriate for software parts. Usability is es-
sentially a run-time concept. A context of use is 2 spedal run-time architecture in which special software compo-
nents are embedded. Objeot oricntation exemplifies run-time architeciures which enable high usability, To de-
sign highly usable systems means focusing on elfvciive tradeoifs among usability’s Key properties: functionality,
ease-of-use, and performance.

A compenent is a significant functional unit of a system. It can be anything from the high-level business
function like “cnstomer order processing™ to a low-level technical task such as “roll back rransaction”. A com-
penent can he either atomic or composite, A composite compunent contains other compenents as its sub-compo-
nents, which are themselves atomic or composite. Therefore, the architesiure of a complete system can be de-
scribed as 2 hierarchical organization of atomic and composite components. Mareover . a component 18 a reusable
and sharzble unit, 1.2, . it can be handed from one project 1o ancther.

The functionality of a companent is defined by its interfaces. The ideal reuse technigue is a component that
exactly fits the application needs #nd can be used without being customized or loreing the user to learn how to
use it. However, a component (hat lits rodzy’s needs perfectly might not fit tomerrow’s. The more customiz-
able & component, the more likely it is ro work in a particular situation, but the more work it 1axes to use it and
to learn to use it. Frameworss are a companent in the sense that venders scll them as products, and an applica-
tion might use several frameworks bought from various venders, Framewerks are much more customizable than
most components, and becoming more impartant™ !, Systems like QLE, Open Docs Java Beans s aud DCOM are

fremeworks.

3 The Model and Tool Supporting User-Driven Domain-Specific Application Software

Development

A model supporting the above idea has been presented, based on a general Al probiem solving model,
Function Module System™, It is called UserMOIEL and can be written as.

UserMUDEL = (Users ,Relations ,Messages ,Characteristics , Domain).

In the model above, "Users” is a ser of users, and an user is an entity of an information system end-user in
the real world which possesses the ability of either carrying out some activity or accepting some activity, also
possesses some specific characteristics s activity style and knowledge. All the users know how to finish their spe-
cific activities and how 1o get those necessary cardirions and resources if needed. “Relations” is a set of relations
among the users. It describes the model of static interaction and the structures of the information system.
“Messages” is u ser of messages transmitted among the users. All the users will communicate each other
through messages possing. “Characteristics ” is a set of the characreristics of cach user, ineluding intrinsic and
vatiable ones. “Domzin” is a set of backgraund knowledge or orher messages of the specific domain which this
model will be used to,

Based on UserMODEL + a users-driven domain-specific application software development tool (called User-
TOOL) is also being developed.

There is an increasing recoguition that software development is not merely a mathematical or technological

© HEFRES AT http:/ www. jos. org. cn

-- BE8 — Journai of Sofrware #HEHEFIR 2000,11(7

R . chellenge, but a complex social s, in which the kind
W architeptuﬂ helleng complex social process, in w e kin

of communication and couperative interaction between the

—— e i
(End user)(‘,:;WW engineet participants determines the quality of the collaboratively de-
. - = —_—
// e

) veloped product!™®. Figure 1 shows how the Ueer TOOL in-
Domain miodel Cnmmngn_tjlage_

Fig. 1 Interacting with the UserTQOL ment process. Note that the UserTOOL interacts with an

teracts with cther agents involvad in the sofiware develop-

end user and a softwarc engincer tegether. The focus of the
UserTOOL is on bridging the gap between informal and [ormal specifications. i e. + hetween the two under-
standing interfaces of the end users (the application software definers) and the software englnears (the applica-
tion software developers). It also serves as a bridge between the domain model and the final application sufi-
ware. It will adopt user-driven domain-specific applicarion software development methodology based on compo-
nent-based software architecture to develop application seftware systems.
According to the five steps of user-driven requirements analysis. the requirements analysis part of User-
TOOL. can be divided into five component sectians'™; requirement acquisition section, requirement interpreta-

tion section, requirement negoriation seclion, system definition section. systerm protutyping section.
4 Conclusjons

There is a very interesting statetnent, i. e. » the third one among the four rules presented by Rene Descartes
(1637) 10 sclve complex problems, “to conduet my thcughtariu such order that, by commencing with objects the
simplest and essiest to know, [might ascend by little and liitle, and as it were, step hy step, to the knowledge
of the more complex; assigning in thought a certain order even 1o those objects whirh in their own nature do not
stand in a relation of antecedence and sequence ... " The work reported in this paper s only the first siep. but

may be a mearingful one.

References

1 Naur P, Randel B et al. Softwere ngineering: Report on a Conlerence Sponsecrec by the NATQ Science Commission.
Sciemific Affairs Division, NATD, Brussels, Belgium, lan. 1969

2 Bnserd F et al. Toward software plug-and-play. In. Proceedings of the 1997 Symposium on Software Reusabilicy
(S3R'97). Baston, MA, 1997, 18~29

3 Priete-Tdaz R, Neighbars [M. Module interconnection languages. Journal of Systems and Sofuware, 1986,6424):307~334

4 Pery D E. The inscape environment. In; Procesdings of the 11th International Conference on Software Engineering. 1982

5 Bochm B, Scherlis B. Megaprogramming. In: Proceedings of the DARPA Sottware Technology Conlerence, Arlingtor:
Meridien Corp. , 1952

§ Wiederheld G ¢ af, Toward megaprogramming. Communications of ACM, 1992,35(11) ,80~09

Y Batory I, Geraci B]. Validating component composition in soltware system generators. In. Proceedings of the 4th Inter-
national Conference on Sofiware Reuse. 1996

8 Garlan 1), Perry D E. Intraduciion o the speeial issue on software architecture. IEEE Transcations on Software Engineer-
gy 1995,21(47 269274

9 Magee § et al. A constructive develnpment environment for parallel and distributed srograms. In: Prececdings of the 2nd
International Workshop en Conligurable Distribated Systems. 1§34

10 Purtiln 1. The polylith software bus. ACM Trarscations on Programming Languages and Systems, 1994,16{1), 181 ~174

11 Mettaia B, Graham M M e 2f. The demain specific soitware architecture program. Technical Report. CMU/SEL-92-5R-
9, June 1992

12 Fischer G. Teomain-oriented design environments. Automated Software Engineering, 1994, 1(2)

© HEFRES AT http:/ www. jos. org. cn

FOAM—HBPFELFHEE SR RN TR E — 86% —

13 Davis M }, Williams R B. Sofwware architecture characterization. In: Proceedings of the 1597 Symposium on Sultware
Reussbility (SSR"97). Boston, Massachusetts, 1987, 30~~38

14 Davis A M. A compsrison of techniques [or the specification of external system behavior. In: Thayer R H, Dorlman M
eds, System and Scftware Requirements Engincering. Washington. DC. IEEE Computer Society Press Tutorial, 1990

15 Rada R. Software reuse, Intellect, 1995

16 Boehm B W. Irdustrial software metrics TOP 10 list, 1EEE Software, 1387,4(5):84~85

17 Coad P, Yourdon E. Object Oriented Analysis. 2nd Edition, Prentice Hall, Englewood Cliffs. 1991

18 Thayer R H, Dorfman M ez uf, System and Software Requirements Engineering. Washington, DC, IEEE Computer Soci
ety Press Tutorial, 1990

19 Emam K E ¢ al. User participation in the reguircments engineering process: an empiricel study. Reguirements Engineer-
ing, 1936, 1¢1);4~26

20 Tves By Olson M. User involvement and MIS success ; a review of reseerch. Manage Science, 19%4,30(5).586~ 603

21 Berry . Involving users in expert sysiem developmen:. Expert Systems. 1994,11¢1), 23~ 78

22 Torkzaceh G, Lol W. The test-retest reliability of user involvenent instruments. Inform Manage, 1994,26:21~31

23 Sack K. User participation ir sofllware development; what is it, why. and how? In: Driels U, Tagg E eds. Education for
Systen Designer/User Cooperation, Elsevier., 1985

24 Mumiord E. Defining system tequirements to meet business needs . a case study example. The Computer Jeurnal , 1985,28
(2):97~104

25 Wirth M. Program develapment by stepwise refirement. Comimunications of ACM, 671,144,321~ 227

26 MeGrawan C. Kelly J. Top Down Structured Programming. New York: Perracelli, 1975

27 Warnier J. Logical Construction of Programs. New York: Van Nostrand Reinhcld, 1974

28 Yourdon E. Constantine [.. Structured Design. Prentice-Hall, Englewnood Cliffs, 1979

2% Jackson M. Principles of Program {lesign. londen; Academic Press, 1073

30 Lugi, Goguen), Formal methods: promises and problems. IEEE Software, 1997,14(1).73~85

31 Barki H. Hartwick J. Rethinking the Concepi ol User Involvement. MIS Quarterly, March 1989. 52~ 43

32 Lam W. McDermid | A. A summary of domain analysis experience by way of lieurissics. I, Proceedings of the 1997 Sym-
posium on Software Reusability {SSR*97). Roston. MA, 1997, 54~ 64

33 Prieto-Diaz R. Dorain analysis: «n introduction. ACM Soltware Enginecring Netes. 1900,15¢2),47~54

34 Jarzabek 8. Modcling multiple domains in saltware reuse, In: Proceedings of the 1997 Symposium on Software Reusability
(83R"97). Boston, MA, 1957, 85~74

35 Tracz W. DSSA: pedagogical cxample. ACM Soltware Engineering Notes. 1995,20.47~54

36 Kang K ot al. Feature-oriented domain analvsis feasibility study. CMU/SEROCG-TR-21, 1380

37 Wartik 5, Priete-Dhaz R. Criteria for comparing reuse-sriented domain analysis approaches. International Journal of Sofi-
ware Engineering and Knowledge Engineering, 1992,2(3}:403~131

38 STARS. (hgauvisation Dowmain Modelling Guidebook, STARS-VC-AQ23/011/00, Mareh 1995

3% Rumbavgh J. Object-Uriented Modeling and Design. Prentice Hall, Englewood Clilts, 1931

40 Shlaer 8. Mellor . Objeet Lifeeyeles: Meodelirg the Woxld in States. Prentice Hall, Engiewood Cliffs, 1992

41 Lim W C. Effcets of reuse on quality, preductivity, and economics. 1EEE Softwere, 1994,11{5):23~30

42 Joos R. Software reuse at Motorola, IEEE Software, 199411453 ,42~17

43 Clements P. From Domain Models to Architecture. USC Center for Engineering Foensed Workshop on Software Architec-
tures, June 1994

44 Kruchten P. The 441 view model of architecture, 1EEE Soltware, 1995,12(6).42~50

45 Bassert P G. The theory and practice of adaptive reuse. In: Proceedings of the 1897 Symposivm on Software Reusability
(88R’97). Boston, MA, 1997, 2~9

46 Bassett P . Framing Software Reuse, Lessons from the Real World. Prentive-Hall, Englewond Cliffs, 1997

47 Jubnson R E. Components, frameworks, patterns. In: Proveedings of the 1957 Symposium on Sofrware Reusability

© HIEERES AT hip:/ www. jos. org. cn

— 870 — Jowrnal of Software W AFFHR 2000,11(T)

(S8R’97). Boston, MA. 1097. 1017

48 Li M. A cooperative solving model supporting users-oriented requirements analvsis. In: Proceedings of the IEEE Internu-
tignal Conference on Systemns. Man and Cyberneties, 1996

49 Macaulay L. Reyuirements capture as a cooperative activity. In: Proceedings of the IEEE International Symposium on Re-

gquirements Engineering. IEEE Computer Society Press, 1993, 174~ 131

30 0 M. Users-oriented requirements analysis in avomated MIS production. In: Proveedings of the 12th Irternationsl Con-

ference on CAD/CAM Robotics and Factories of the Future (CARS & FOF’96). 1996

—MARESNEARTEBEARGFEHRSZ
F0m

(PEBERKEFFFTENMYHEFELEE L5 100080

BE RE-FEMEAFTESHFEZ.HRAAP LA BE ~HETHSN RS AL HETF 1368
EARRBERBGTA TR BARFAEASAFATH 234D AEL ARG FLAIREASP#
A LSRR RIS R SRR CARF RSN AR TR T ERET TREES R

XEE BB TAIR.APAL . HBE RHRASHN. IR P TH,
hEFES %S T3 O

FIFFEHT hip:// www. jos. org. cn

