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Abstract Liveness and saleness are impertant behavioral properties of nets (systems), Many powerful re-
sults have been derived for some suhelasses of Place/Transition nets (systems). The aim of this contribution
is to draw a gencral perspective of the liveness and safencss for Asymmetric Choice nets (AC nets). Firstly,
this paper presents a sufficiem and necessary condition for those AC nets whick have liveness monotonicity and
a polynomial time algoritam to decide if a given AC system is live and safe, and it satisfies liveness monoronic-
ity. And then the sufficient and necessary conditions of (structural) liveness and (structural ) safeness for two
subclasses of AC nets (Strong I AC nets, Strong IT AC nets) which have liveness monotonicily are presentec,
Key words  Asymmetric choice net. live, safe, structural liveness, structural safeness. liveness monotonici-

ty. strong I AC net, strong [T AC ner.

1 Introduction

Liviness and safencss are main behavioral properties of Place/Transition (P/T) rets!'!, Liveness corre-

sponds o the absence of global or local deadlock situations and safeness corresponds 1o the absence of overflow.
For general P/T systems, it is difficult to analyze the liveness based on reachability graph. Thus, penple con-
centrate on liveness of many usefu. subclasses of P/T nets. They hope to find ideal algorithms under some limi
tation.

At present. hveness and safeness analysis is easy for State Machine (SM)Y, Marzed Graph (MG) ¥ and
{Extended) Free Choice nets ((EJFC net«) ™, but, as we know, these mentioned subclasses of Petri nets are
very simple. Many real-world systems are more complex. Although Asymmcrric Choice nets (AC nets) are
more geaeral subelass of Petri nets. they still lack methods of analysis up to now. On the other hand, we know
that liveness of sale (FEJFC nets (SM or MG can be decided in polynomial-time. We want to fird a maximal
subelass of safe Petri nets . whose liveness can be decided in polynomial-time. This paper gives some new results
in this direction.

L73. " This paper presents a sufficient and

We know that general AU nets do not have livencss monotonicity
neeessary condition for those AC ners which have liveness monotonicity and a palynomial-time algorithm to de-
cice il a given AC system is live, sale and satisfy liveness monotonicity. Then the sufficient and necessary condi-

tions of (structural) liveness and (structural) safeness for two subelzsses of AC nets (Strong 1 AC nets, Strong
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IT AC nets? which have liveness monetonicily are presented.
The paper is crganized as follows. Section Z gives the basic concepts and notations. Section 3 presents AC
net theory. Tn Section 4, Strong T AC net theory is given. Section § presents Strong 11 AC net theory. Section

& concludes the whele contribution

2 Basic Concepts and Notations

We assume the reader is familiar with the structure. liring rule. basic properties of net modelst®” and ele-
mentary graph theory. However, in this section we recal: some basic concepts and notations that are going to be
usec.

Definition 2. 1.

1. A (Fetri) net is a triple N=(P,T3F) where

(1) P={pi+paec.. spu) is a finite set of places.

(2) "=ty +t4s. .. +2,} 15 a finite set of transitions,

(Y FSPXTIUCTXEP) is a set of ares (flow relation),

Gy PV = and PUT# @,

3 dam () Ueod (Fy=pPUT (dom(Fl=1{4{3 y:{x . ¥ EF}, cod{Fr={r|d y:(y,x)EF}).

2. A Petri net N=([*,T;F) is called Asymmetric Choice net iff

Y A{p.qdEPXP, pNg £D=p Ty oty Tp .

3. A par of a place p and a transition ¢ is called a seif-loop iff (. YEFA G, pIECF. A net is said 1o be

pure iff it has no self-loaps.

In the fcllowing. we only consider pure nets.

Definition 2. 2. Tet N== (.73 F) bhe a net and T= (N, M) he a ner system with the marking M.

1. The incidence matrix A of N is an m X» matrix of integers and its entry is given by

] if ped;
a, =< —1 i pE
0 otherwise

I Anet N is P-comnected iff ¥ x,y€ . there exists a directed path from « to y.
A net NV is surong connected il ¥V w,y€ PUT, there exists a directed path [rown x 10 y.
i f€T s cnabled at M iff ¥ p€& "1 M{p)=1.
1. A transition £ enabled at 8 can fire and alter firing the marking is changed {rom M w0 M.
M{py+1 i pCe’
MG =<Mi(p—1 il pE 4
Mipm otherwise
This s denoted by M_t>M'. For Mty =M. .. [ >M,, i1, M,,...,M: arc called reachable from M.
The set af reachable markings from the marking M, is denoted by R(M,) or R(N,M,).
. 0T is live for the system (NLM) iff ¥ Me R{N M) 4 MERIN,M): tis enabled at M.
£ AN M) issale iff F o€ 2, Y p€ Py MECRIN Mo): M(pistk. (Safe is the recommended term in net

en

comnuuunity , sometimes it is called bounded).
N is structurally safc iff ¥ My, and (N, M) is safc.
ToON Mo) s live ift ¥ e€T, and ¢ is live.
N s structurally live iff 3 My, and (N, M,) is live.
8. I Fis a siphon of N ilf /7% & and FH=H ", A siphon is minimal iff it does not contain a siphon as a
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proper subset.
RC P is atrap iff R32 @ and R*C " R. A trap is minimal iff it docs rot contain a trap as a proper sub-
set.

9. An S-component Ny of a ner N iz defined as # subnet generared by places in N having the following two
Properiics
13 each transition in N, has at most one incoming arc and at mos: one nutgoing arc;
2) Nyis the net consisting of these places, all of their input and output transitions and (heir connecting
arcs.

A Petri net N=(P,T 1/ is said to be coverad by S-compenent iff ¥ € P, 3 S-component satisly: p& S

component.
3 AC Nets

3.1 Liveness monotonicity '*

To prove liveness monotonicity theorem of AC net. first we give a lemma.

Lemma 3. 1. fet N== (P73 F) be an AC net. ¥ HZZ P is a minimal siphon of N, then M 1s P-connected.

Proaf. We firs{ define a relation rin H;

YV oprap € F o pirpyes there exist directed paths from gy to pe and from pa 1o py.

Obviously s #8 an equivalent relation in 1.

Let Hir= 10 Dol padie ool pad b Al pn Do =A{p |l 5, H A parp; ). where [ g L G=1.... kY is p; equiva
lem class about ». To prave this lemma, we must proves £ =1, and reduction 1o shsurdity is used here.

Assume k222, the directed graph ¢ can be defined =5 [ollows: the node set of ) s F{/r, are se1 of 7 is
Y p " [p ] there exists direeted path from p, o pyand [p].520p, ) ).

From £2:2 and consiruction of r and (. we know . at lezst one node does not have input arc in (. Without
loss of generality, we can assume [ p) ], s this node.

Now ., we prove [ p ], is non-empty siphon in N,

From the definition of ¢, [p ] s non-empty. If [p ] = @, then. fram [ o= 030 p 00 it can be de-
duced thar [ £, ] is a non-empty siphon in N. Otherwisc, ¥ (€ "[p]3 p& [pi ] such that € po As | 7e0
I there must exist 4" € M. suchthat p'€ "1 loe. #€p 7). As L ] bas no input are in G+ it can be de-
duced that p & [pi 1. So. & [p ] From the gencrality of £, we know 1 py L[ p ). Theretore. we can de-
duce that [, ] is also a non-empty siphon in M. This contradiets that [/ is minimal nen-empy siphon in ¥, So.
k=1.i ¢ lLemma 3.1 holds: If is F-connccted. O

Below, we prove that minimal von cmpty siphor can be described by net structure.

Theorem 3. 1. et N=[D. 0/ F) b an AC nei. HE P s a siphon in N. £/ s a minimal siphon iff

Yaed [N =1,

(2) I'f ie I’ connected.

Proof.  First, the safficient cendition is pressnt .

Assemne FECHT s 2 non-empty siphon in No ¥ pC L p" € £, from condiion (27, there must exist di- .
rected path from p o p'. From condition (1) and definition of siphon, p€ 1. From the generality of p, 115 |
' So. H[=1, Il is a mnimal siphon.

Now. we give the prool of necassary condition .

First, we prove that condition (1) holds. If s a siphonin N.so Y & 17 o | (1420

Assume /€1, N 220 As Nisan AU net. il £ =p o apade we can let pl G p ol G
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Prs Proco s £ and prae Lo EHy priise. . & H (322).
Now we prove: Hy=H— {p;} which is non-empty proper subset of / in N is also a siphon. ¥ &€ " {{;, we
have t€ " H, and so, tEH .
{a) If 1€ ps o t must be an element in H .
(b)If ¢4 pi + then, as N isan AC net, (¢ )N H=, we have f[MHSH— "' H—{p}=H,. i.e.
{EH,
From (a), (b} and the generality of ¢, "H < H, . This contradicts that H s a minimal siphon. Therelgre,
condition {1} holds.
From Lemma 3.1, condition {2) holds. . ]
Lemma 3. 2. " Let N be an AC net. If every (minimal) siphon in (N, M,) contains a marked trap, then
AC system (N, M) is live.
In the following, we give the proof of liveness monotonicity theorem in AC net, i.e. the sufficient and nec-
essary condition of liveness monotonicity in AC net.
Theorem 3.2, Let N=(FP.T;F) be an AC net.
Zo=(N,M,) is live, and ¥ M;, M. 22M,, Z,=(N,M,) is also live (i.e. liveness satisfies monotonicity } &
every (minimal) siphon in Z; contains a marked trap.
Proof. First, we prove the sufficient condition
As every siphon in {N,M,;) has a marked trap, then ¥ M., M,Z2M,, every siphon in (N,M,) must zlso
contain a marked trap. From lemma 3.2, we can deduce AC net (N,M.) is live.
Now, we give the proof of the necessary condition.
We only need to prove: if there exists a minimal non-empty siphon 7/, such that every trap in it under M,
is unmarked, then there exists M=M,, (N,M) is not live,
We find the maximum trap in F{ by the following algorithm.
o H'=F, X is a subsystem generated by If', i+0.
2. 3T, such that ¢ =@, let t={p},
then ¢ is denoted by £:4,, p is denoted by p; | ;
else, stop.
3 Let H'<=H'—{p;}, 3=, T iF' M )= subsystem generated by 777, r<+1].
4. If H'= ¢, stop; else, goto 2.
Instep 2, we let z={p} just because of | "¢[1H|=1. As |/} is finite, the above procedure must stop at
step 2 or 4. Let terminated value of 7 be m.
Because p, which is found at step 2 does not belong to any trap, in the end. \;ve get that H' is the maximum
trap {probably empuy). '
Now, we scek an MZ=My and a firing sequence o, such that M[e>>M' and F is unmarked in M'.
L. i~ yo! G M~ My M oM, 5 5 =0,
2. 107 0. slops elses goto 3.
3. While 3 p&€ "1 p & I and M (p)<IM (p) do
M (= M (D 1,M (=M (p) 1 ]
end
4. While ¢ is enabled do
fire 4, j~j+1

end
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/
o ——

5. From M'[4...i> M., computc M.

!
—_—

6.0 <=0 tioitis ivmi— 1y MMy j+=0, goto 2.

Atter executing step 4+ M:(p,y=0. From the sclection of ¢« firing i; can only add marking 10 p,(j<Zii. not
add marking 1o pelbzi) or pEJI. S M (py=0and M (JI'1=0, where H—H'={p |i=1...0mi.
Therefore, when the program stops. M (#/)=0, i.e. H is unmarked in M. Let M— M., o=0 . llere M>
Mus but (N,AMD is not live, This conrradicts the liveness monotonicity, Necessary condition holds. ]

In the [ollowing. two simpie examples are given 10 illustrate the above theorem.

m Erample 3. 1. Consider the AC system (VM) as

shown by Fig. 1. [t is casy to verily that (N.AM) is live,

(j ‘\; In this nets there exisis o minimal siphon D= {p . g, po

’ 7 and the siphon D containg a marked trap {p 2 g pyl. We
'—()/ can lind ¥ M, I M=, . then (N, M) must be live.

Example 3.2, Consider the AC gystem (N M), as<
Fig. | Ay AC net, satisfving liveness monoronicity shown by Fig, 2. Also it 1s easy o vorify thar {(N.M.Y s
live. There exists a minimal siphon [)— {prefaspapitin
this nets bat the minimal siphon 12 does not conain marked trap. i.e. it doss not satisly the sufficient and nec-

essary condition of Theorem 3. 2. Obviously, if we add a marking to p:. firc £, then all transitions in this net

can’t be fired any more, i.e. liveness does not have monotonicity.

Livernsss monotonicity s a very strong condi- _ ﬁ_.l_i _..Q
tion. As wa know, liveness of MG . SM and FC net T Py \-\
satisly liveness monotonicity. But, [or AC net, from /( W« E {/ \\\\
Theorem 3. 2. we <now that livencss monotonicity is Q: [ £ \L,..I
equivalent o siphon-trap property, For general AC ~ )
nety liveness does not satsly monotonicity. This is

‘ ;
why liveness of AC net s diffieult to solve. ‘_"j'H (7
3.2 Liveness and safeness of AC nets

In this scetior. we give an equivalent condition  Fig 2 An AC net. not satisfying fiveness monotonicity
for those AC nets which ave live, safe and satisfy liveness monotonicity, First. we introduce some propositions.

Proposition 3. 1. An AC net N= (1,73 F) is live. sale and satislies liveness monotonicity under M, =
every minimal siphon must be a trap.

Proof.  For any minimal siphon /f in ¥, from Theorem 3. 2. /f must contzin « 1rap £ From Theorem
3.1, Ve R and [ ¢RI =1. From the definition of trap. ¥ ¢t& R", 1" TR Z=1. So. liring any transition in
N can’t deerease the marking of R.

If {17 R, i, e. &isnotasiphon, then there must exist a 1€ " & hut t& R, As N s live, ¢ can be fired con-
tinuously . bui liring ¢ will monotonously increase the marking ol F1. This contradicts the safleness of N. There-
fore, I71—R. Proposition holds. ~]

Proposition 3.2. I an AU net N is live. safe and satisfies livenese monotonicity under M. then for every
minimal siphon I, | (Ii= | NH|=1.

Prosf.  From Propesition 3, 1, every siphon I in N must be a trap. so ¢ [1ff1]. From Theorem

e Ve df, | e[VEE] =1
Assume 4 74 £ [TH |21, As N is live under M., [liring ¢ will monctonously increase the marking of 1.

This contradicts the safeness of N, Therefore, | ¢ I |=1|:" NI |=:. Proposition holds. ]
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Propesition 3. 3. If an AC net N=(P,T;F) is live, safe and satisfies liveness monoteonicity under M., then
every p& I’ must be inciuded in a minimal siphon.

Proof. Let p& P and p is not included in any minimal siphon. p at least has an input trensition, other-
wise. {N.M,) is not live or there exist isolated nodes. Let M, € R(M.) and M,{(p) he the maximum marking of
p (IN,M,) is safe). Consider the marking M',, such tha: M, (p)=0and M (g)=M {(p) (g=p}. As every
minimal siphon contains a marked trap in M, ({rom Theorem 3. 2), and p is not included in any siphon. any min-
imal siphon in N contains a marked trap in .. From Lemma 3.2, (N.M' ) is live. and a marking M, can be
reached, such that M’ ,(p) 0.

We can define; M, (p) =M. (p)+ M, (p) and M. (D) =M',(q) (q7=p). M, muost be included in R(M;). So,
M€ R(M,). Therefore. M;{p)>>M,(p). But M {p) is the masimum marking of p, this leads 1o contradie-
tion. Propositior. holds. Il

The {ollowing theorem is bhased on the ahove three propositions and Theorem 3. 2.

Theorem 3. 3. An AC net N=(P.,T; F) is live, safe and satisfies liveness monotonicity under M, &

(1) every minimal sipkon /f in N is a marked trap:

2y ["eNH =10 NI =13

(3) ¥ p€ P must be included in a minimal siphon.

Proof. < From (1) and Theorem 3.2, we know: N is live and satisfies liveness monotonicity.

et I s+ f1, be all minimal siphons in N. From (1) and {2). we know that {iring any transition in N
wiil nor change the marking of H.... ,H,. Moreover, from (3), we deduce that ¥ p&€ P, p=SM{(H))+. ..+
MyUL). So. (N M) is safe, '

= From Theorem 3. 2 end Proposition 3. 1, (1) holds.

From Proposition 3.2, (2) holds.

From Proposition 3. 3. (3) holds. M

From above theorem, we know that the saleness and liveness menotonicity of AC net can be described by
net srructurc. The following section provides a polynomial-time algorithm to verify whether AC net is live, safe
and satislies liveness monotonicity.

3.3 A polynomial-time algorithm for AC nets

An cutline of the polynomial-time algorithm is given in tais section. First, two propositiens are given to
support the algorithm.

Proposition 3. 4.'"' et N be a Perri Net.

N s structarally live and sale = N is strongly connected,

Proposition 3. 5. An AC nct N=(F,T;F) is live and satisfics livencss monotonicity under M.

(N.M) is safe =N is covered by strongly-connected S-componeats.

Proof.,  Obviously . this propoesition can be deduced from Theorem 2. 3. ]

Next, we give the outline of the algorichm (e.f. Refs. [6.11]);

Algorithm 1.

Input  An AC system 2.

Output  Yes, X is live, safe and satisfies liveness monotonicity.

No, otherwise _

(1) Check the net for being strongly connected.
If the net is not strongly connected stop with No.
(due to Proposition 3.4)

(2) For all places p find an S-companent which contains p by
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(2. 1) finding a minimal siphon H containing p.
If p is not included in any minimal siphon I{ stop with No.
(due 1o Theorem 3. 3)
(2. 2) checking # for generating an $-component.
If I'T does not generate a subnct being an S-componcnt
stop with No. (due 1o Proposition 3.5}
(3) For every pzir (p,1) where pis a place such that |p" |22 and ¢€ 47
(3. D) [ind a sirongly connectec siphon Ff containing p and no place n 7",
(3.2) 1f ==, then find a minimal siphon I{' containing p in I1.
(3.2, 1) IF EP £ 67, then stop with “No™ (due to Theorem 3. 33
(1) Check the existence of an nnmarked siphon.
If an unmarked siphon exisrs then stap with “Na’
else nutput “Yes".
For determining the worst case time complexity of algorithm . all steps are listed below {(the {ollowing re-
sults can be found o Rels, [6.111). ‘
1) Check the net for being strongly connected. OC| P+ [T+ [F D)
(2.1} Find a minimal siphon {7 containing p. OCIT P4+ 1T+ 1F[))
(2.2) Check H for generating an S-component. (3( P||T1])
(3. 1) Find a strongly connecred siphen A containing p and ne place in¢ " QC|#F!P %)
€3.2) [ I71#£ &, then {ind 2 minimal siphon I{' containing p in 77. O T F])
(1) Check initial marking. OO P12 T
Steps (1304 zre called at most once. Step (2. 1) and Step (2. 2) are celled at most | ] times, Step (3. 1)
and Step (3. 2) are called at most | F| times. Thus. the worst case time complexity for the algorithm 1s given by
OGPIHITI+HIF[H12 AT P [ F T+ IFDHIP AT D+ [ PEITI+F IR P F T
=OUPTHFE|IFIFIHPPAFIEITD
In the above, we have described @ polynomial-time zlgorithm to decide whether an AC system is live. safe
and having liveness monotonicity. This algorithm has a worst case time complexity of Q| [T||FI{ |F|?
[P Fi*1T 1) which can be estimated as ((x') (where n=max(|FP |, 7|} and let |P|=|7T|=nand |F|—
nt).

Although we have given a polynomial-time algorithm to decide whether an AC net is live, safe and having
o4 g paly 2

liveness monotenicity , we still don’t know what en AC net is, which satisfies liveness monotonicity. In the fol-

lowing two sections, two subclasses of AC nets that satisfy the liveness monotonicity are considered.
4 Strong 1 AC Nets

4.1 Related concepts and notations

In this seetion, Strong T AC net is considered.

Definition 4. 1. For ¢,,6, €T, il " ¢t,=, they are enabling independent.

Definition 4. 2. Let {(N.M)) be a net. A siphon /f in N is said to be controlled ff ¥ MER(M,Y. I pE H.,
MCpyzt.

The new snhelass of AC net, Strong [ AC net, 1= given as {ollows.

Definition 4. 3. Let N={(P.7:F) be an AC net. N is called Strong 1 AC net iff,

Y (oo d&PX Py p" Ng #FF and p g = p="q. -

© hIEREY
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Remark. Here the condition is equivalent 1o
JeeT r—(prseespn) and  piCops o SO ol P = = P = P T P
In the following, some Strong [ AC nets are shown.
Figure 4. 1) (1) lustrates an AC nety hut
it is not a Strong 1 AC ner (because py Cpf = /

p1 s but piy pos py have different pre-set). In ’
p\ _(f' S

Figure (4. 1) (2} as py Tpl = ps and gy, pos

’/f P //\\/gl ey

s have the same pre-set, ioe. p1=" pn—"pus _ba" S

by have the same pre-se O A f 2,

this net is 2 Strong 1 AC net. Figure (4. 2) (13 (D AC .

llustrates a Free Choice net. Figure (4. 2) (2) Fig. 4.1

illustrates an Extended Free Choice net.

e 9\ /O/)/\ Py
Py \ / /"l
I~ "ﬁl, | [ ’ L{ \\

(1) Free choice net (FC net)  (2) Extended free choice net (EFC net)
Fig. 4.2
Obvipusly, Free Choice nets and Extended Free Choice nets are included in Strong 1 AC nets, and Strong [
AC nets are included in AC nets. This can be illustrated by Fig. (4. 3), Therelore. Strong 1 AC nets are impor-
tant subelass of AC nets, which could be applied in many practical cases.

Corollary 4.1. let 5, =0, T;F.M,) be a Strong 1 AC sys-

_T_:_\ tem. satisfying the following.
AL net / ( H nFQ) ) . . . . -
R / If there exists &1 F v {pi v spat and py Cpy T O

Stmng I A( ml

piaCpl = o=pri=1t-v... .1, }. then, for pEPand p" T p; .
we have: Mo (p)Zzmin (Mo (pa) ... JMe(pad).

Fig. 4.3 Relation among AC nets, Strong 1 - N .
AC nets and EFC nets and FC pets Then the foliowing conclusion holds .

Y MeR{M.Y, tiv... .+, must be concurrently enabled or not

enabled.

In the next three sections, we’ll consider the liveness and saleness on Strong [ AC ner.and give a polynomi-
al-time algorithm
4.2 Liveness of Strong 1 AC nets' "

In this section, a structural liveness thearem of Strong 1 AC nets is presented. First, a very important lem-
ma s introduced.

Lemma 4. 1. ""An AC system (N, M,) is Hive Hf for all ME R(M,) and (minimal} siphen II, there exists
$EI, satistying M{(p) =1, _

Remark. Corollary 27 in Ref. [8] considers the weighted system. Letting weight to be 1 will deduce this
lemme..

Theorem 4. 1. [et 2;=(N.M,) be a Strong [ AC system, satisfying the condition of L.emma 4. 1, then the
liveness of ¥, is monotenic.

Proof.  Assume M, =M, (N.M,)is live. but ¢N.M,) is not live. Then, there must cxist a siphon D&
Pin M, ard a liring sequence a5', such that M,[al>>M} and D) is unmarked in M}(deduced by Lemma 4. 1), If
we can prove that: there cxists a firing sequence o}, such that M, [o}>> M and 1) is also unmarked in M}, then

this contradicts the liveness of X\, The theorem holds.

FESATFT  http:/ www, jos. org. cn
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In the following. we’ll construct a firing sequence of and M . Let 6=1...1,{rz=0),

Next, we'll operate by recurrence on the number of n to prove that there exist of and M},

Case I. If n="0, then Mi=M,. Let gl=357, then Mi=M sIM,=M}. Obviously, 1) is unmarked in M.
Theorem hotds.

Case 2. Consider s 2=, Let £r4.. . 585 are nut cnabled o My butl ¢4, 15 enabled in M,. Then we bave
(U e . =& from the definition of AC net and Corcllary 4. 14 0. €. £+, .. +#; are enabling independent
of Ly 30, we can rewrite o1 =& \f1.. ity oe -« 0 SUCh that M [, 2 MY and My [ el M.

We can repeat the above procedure on £;.. .12 2. .. £, and M%7, In the end. we can rewrite ol==nv, satisfy-
ing:

MyLu= M5 o> M (4. 12
My[uzrM], v=v... v, and any transition among o, .. . . »v, is nol cnabled in M.

Case 2. 1. [ mi=0, then let o)l=u. A =714]. Theorem holds.

Case 2.2, If m>>0, then from the liveness of =), there must exist @=w. .. @, such that Mi[ o> Mo, >
M. There are two cases as follows.

Case 2.2. 1. If (U, v NCUS @)=, then @ is enabling independent of v. So. we have:

M3 Mi Loy > Moo o v, M (4. 25
Obviously Mi=Mi. Next, we prove that:
(Uiw)NCDUD Y= (4. 3)
If {4.3) doesn™ hold, thenlet (L} o )N DUD Y= (<), but w.. € " DUD . Bevause HDED, we
have w,, € 7",

letd€ D, w,€d” and Mi[e,...w>>M;. From the above analysis, M{(d)>>0 and M} {(d)— M (d). So,
MI(d)>>0. As MiZzM;, we have MU&)>>0, but M3(d)=0. From (4.1), there must exist w . such that v, €
d s ice. w ey # . This contradicts (U, v M (UL " @) =@, Therefore, (4.3 holds.

According to (1. 2) (4. 3), for all § € 1), there must have M{d)=M}{d). i.e. D) is umnarked in M3. As
m—1<Un, applying the recurrence hypnthesis on M3}, M} and v,. . . v.., there must exist o'y and M’y such that My
[&" =M and L) is unmarked in M. lct g} =uwv 0’|, M=# . Theorem holds.

Case 2.2.2. U (Ur U w0927, then, ler (LR o) MO @) =20 (B<ZLY, but (U, " w)
T e F= . Moreover, let (U0 T w) [ wei = @ r<lm ), but o M@y, 52 0. These imply (‘Ufil 10N
v, 11 =2 (from the definition of AC net). Therefore. v, , is enabling independent of v,.... ,u,.

Lol v = v Uy Ulrige o Uy @ = . e AS o4, ey 72 » and from Corollary 4.1 and the defini-
tion of AC net. we know that o, is enabled in M (M{[«' =>M]). Then it is true that Mi{v' =M}, Let Mi[«
=M{ (v, MY, then @ is enabling independent of v'. This transforms to Case 2. 2. 1. Theorem holds.

Up to now, we have proved that if Z,is live, then ¥ M>==M,, = (N,M} is live 100, i. ¢, rhe liveness of X
is monaronic, O

Theorem 4. 2. Let N=(I,7;F) bc a Strong 1 AC net. N is structurally live <3 cvery (minimal) siphon
containg a trap.

Proof. Sufficient condition:

As every siplhion conains a tap, chere must exist a marking M, such that every (minimal) siphon contains
o marked trap. From Lemma 3. 2, it can be deduced that AC net is live in M. Therelores N is structurally live.

Necessary condition

As N s structurally live, there exists a marking M, such that T= (N, M) is live. We construct a firing se-

quence ¢, , M e;2>M;, such that the lollowing conelusien holds in M, ;
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HAET, t={p1res npmts pr Sps =. .. Spin1 Cpi =...=pn v then pE Panc p’ Tp,. We have M
(P)Zmin(M (s e . M, (pod).

Find the firing sequence by the {ollowing algorithm.

1. Tl ou@s =P T F MY, T'<T; i<].

2, B3 el et t=ipyveaputand p) Cps T o T pd yCpr =... = poe Forall p' " Cps o there is

M (") <min(M (py. .. M (2,03, then ¢ is denoted by £ else. stop.
3. For j=1to k| do
31, 13 M (p<min (M { pdae . M (pad)s then find ' € pi and p,& "1
else. goto 3. 4.
3.2. I ¢ is enabled in M’, then fire ¢, oo s M[# > M7, M —M",
goto 3. 1.
323 U 3=(P " F M), find a [iring sequence o', such that 1" (t"& * p¢) 1s enabled. then fire this
firing sequenee and %, o< od't", M'[e't" > MY, M < M"; goto 3.1,
3.4, End.
4. While 3 p& 'y p" Cpi and p& {prv..spe 1}, satisfying M (p)<min(M' (p),... .M (p.)) do
4. 1. Fire t;, a<at,, M [£,>M".
4.2. M'—M".
4.3. End.

5. T'=T"—{p; b {+-i+1.

6. U T' =, stop; else, goto 2.

In step 3. 1, we must find a '€ p7 and p; & "', because p/ Tp, S... Spf (T pf =... = pa. In step
3.3, as X' is live, there must exist a firing scquence o', such that " ("€ * p,) is enabled. In s1ep 4, after step
3, there mustbe M (p) .. .0 M (pae 2Z2min(M (p) . oo M () ). Evenof M(p3) =0, we can also let ¢, fire
min(M' (p).. .. .M (p,)) times, so in step 4, it can be reached that M'(p3 =min(M' (p) . .. M (pa)).

After executing the above algorithm ., we have o and M. Let ¢, =¢ and M,=M". then the conclusion men-
tioned above holds. From Theorem 4. 1, it can be deduced that ¥ M, if MZzM,. then (N,M) islive. So, [rom
Theorem 3. 2, we know that every siphon must contain a marked trap in M,. Therefore, every (minimal}
siphon in N contains a trap. Necessary condition holds. ]

The above theorem is very similar to the liveness theorem for FC nets. Two simple examples are given to
ilustrate this theorem as follows .

Ezample 4. . An AC net illusirated by Fig. (4. 4) contains a minimal siphon D= {p, p;}, and this siphon
contains a trap s pyi. I we put some tokens in g or py, then this net is live, 1.c. this net is structurally live,

Example 4. 2. An AC net illustrated by Fig. (1. 5) contains a minimal siphon 3+ {#,. 3}, but this siphen

does not contain any trap. It is easy to verily that there does not exist any living marking.

:

FIN
e
AOn

J\ S P . S s
A . \\ T e “\
£ e Q __,|:| T VA T .
£2 e Py
Fig. 4.4  Structurally live AC net Fig. 4.5 Not straciuraly live AC net

From the liveness theorem of Strong 1 AC nets, someone may ask whether the lollowing theorem holds:

Strong, T AC system 3= (N, M) is live iff every (minimal} siphon contains a2 marked trap.

© i
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Unfortunately, this praposition is wrong. The Surong T AC system in Fig. {4. 6) gives a contrary example.
Figure (4. 6) illastrates a live Strong 1 AC net. This net contains a minimal siphon H o { gy pyapgts and 1

contans @ trap {psspe). Although this tenp Is unmarked s this Strong T AC net is suill live,

_7_,_,.,.7-—-0;@ 4.3 Safeness and liveness of Strong I AC nets
t|. //? l\‘\\ Saleness is another imporiant property i Petri
\\ £y /,/ / \ nets amd 1t is discussed in this section.
PJCI‘F o \\ r/ ] I"‘I‘I t\‘i N Proposition 4. 1. A Sirong T AC nee N= (7150
\‘l, . \\ ”‘ -‘ . is structurally live and safe = every minimal siphon
f2 @ Py fy “ﬁ) # must be a trap.
Fig. 4.6 A live Strong T AC net in which a Proof., As N s structarally live, there must ex

sl £ 1S . . . = . . .
iphon contains no marked trap ist a living marking M. For any minimal siphon H in

N, from Theorem 4. 2, siphon # must contain a trap &. From Theorem 3.1, Y +&€ R . (1R =1 and from
the definition of trap: Y +& R", ¢ [1#]|Z]1. Se, firing any transition in N can't decrease the marking of <.

1 IF#£R, e, Risnota siphon, then there must exist a +& K hut & 7. As N is live, 7 can be [ired con
tinnously, but firing ¢ will manatonously increase the marking of H. This contradicts the safeness of N. There-
fore . If=R. Proposition holds, [

Proposition 4. 2. 1{ a Sirong T AC net N is structurally live and sale. then for every minimal siphon f1.
[“rVFE e V] L

Proof.  From Proposition 4. 1. every siphon /7 in N muost be a trap. so [+ (VH 21|, From Theorem 3. 1.
Vel | iNH|=1.

Assume 3 ¢ ¢ V2210 As N s live. there must exist o living marking M. Firiag ¢ will monotonously
increzse the marking of M. This contradicts the safeness of N, Therefore, | "¢V |¢" NH . =1. Proposi-
tion kolds. i

Lemma 4. 2. Let X= (N, M} be & Petri net system, £ be a siphon in 2. If If can be contralled in M.,
then ¥ M. such that M{p) =M, (p) (p€ HY and M(p)ssM.(p) (p&GI1Y, {1 is controlled in M.

Proof. Assume H can’t be controlled in M, then there must exist M' € K(M) and a [iring sequence o,
such that Me =M and M (F)=0.

Because ¥ € Ny M(p)=iM.(p), the firing sequence o ean also be fired in M, and a marking M, (M,[s>>
M" s reached. Firing ¢ will lead 1o M, (H) =0 (hecause ¥ p& 1, M(p)=M,(p)). This contradicts the zon-
ditien. Lemma holds. L

Proposition 4. 3. 1f N=C(/2.7F) is a structurally live and sale Strong T AC nets then every p€ J must he
included in a minimal siphon.

Proof.  lLer p€ 17 and pis not included in any minimal siphen. p at least has one input transition. other-
wise, N 15 not structurally live or there is an isolaled node. As N is structurally live . there must exist a living
marking M. Lt M€ R(M.) and M, (p) be the maximum marking of p (N is sirocturally safel.

Consider the marking M’ ), such that M" (p)=0and M' \{g)=M {(p) {g= p]. As every minimal siphon can
he controlled in M ([rom Lemma 4.1}, and [rom Lemma 1. 2, p s not included i any siphon. then any siphon
in N can be controlled in M'). From Lemma 4.1, (N, M7 is live, and a marking M’; can be reached s such that
ML (70,

We can defline: M.{p)=M ,(p)+M (p) and M, {g)=M".(q) (g7 p). M, must be included in RCM, 3. So.
M€ RM.). Therelore, Mo(p) =M (p). but M (p) is ‘he maximum marking of po This leads to contradic-
tionn. Proposition holds, []

The following theorem is based on the above rhree propositions and Theorem 4. 2.
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Theorem 4. 3. A Strong 1 AC net N— (#,7:F) is structurally live and safe &=

(1) every minimal siphon H in N is a trap;

@ 1 eNHI=lr NHI=1;

(3) ¥ pE£ P musi he included m a minimal siphon.

Pronf. <=From (1} and Theorem 4. 2. N is structurally live,

We give 2 marking M of N. Let Hy.....fl. be all minimal siphons in N. From (1) aad (2). liring any
trangition in N »Iv'ﬁl wot change the marking of H..... . H.. Moreover. from {3). we dednee tha: ¥ p€ P. pxl
MHO+. .. +M(H,), So, (N,M) is safe. From the generality of M, N is structurally safe.

= From Theorem 4. 2 and Proposition 4. 1, (1) bolds.

From Proposition 4.2, (2) holds.

From Propositien 4. 3, (3) holds. ]

From Theorem <. 3, the strucicral safeness and structural liveness of Strong [ AC net can be described by
net structure. The following section provides a poiynomial-tiree algorithm to verify if s Strong 1 AC net 15 strue-
turally live and safe,

4.4 A polynomial-time algorithm

An outline of the polynomial-time algorithm is given in this section. Belore the algorithm, a propositien is
given.

Proposition 4. 4. Let N= (.7 F) be structurally live. Strong 1 AC net IV is structurally safe & N is cov-
ered by strongly-connected 5 components.

Precf. (bviously. this proposition can be deduced from Theorem 4. 3. []

Algorithm 2

Input A Strong [ AC net N,

Output  Yes, N is structurally live anc safe.

No. otherwisc.
(1) Check the net for being sirongly connected.
If the net is not strongly connected stop with “No”. (duc to Proposition 3. 4)
(23 For all places p find an S-component which containg g by
(2,17 linding a minimal siphon H comaining p.
If £ is not included in any minimal siphon # stop with *No™ (duc w Theorem 4. 3)
(2. 2) checking [f for generating an S-component.
1 #f does not generaie a subnet being an S-component. stop with “No™ (due w
Proposition 4. 4}
(3) For every pair (p.t) where pis a place such that [p” [Z=2 and 1€ p7
(3. 1) find a strongly connected siphon [ contamning p and a0 place in i ”.
(3.2) If H¥ ¢, then find & rummal siphon /f° containing p in £,
(3.2, 1) If H' =, then stop with “Nn”. (due to Theorem 4. 37
{4y stop and outpur “Yes”.
This algorithm also has a worst casc time complexity of Q@®) Cwhere n- max (P [Ty let [Pi=IT]|=

nand | F|=r").
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5 Strong Il AC Nets

5.1 Related concepts and notation

Definition 5. 1. bet N—(P.T;F) bean ACnet. W J &7, I1={pi..cspuls pr Spr ... Tpi =...
= pn o let [)A.(': )y T pa s Fae= Py XTac) UL ae X Pac)) N F 5 then we call Noe=C(Fa T acs Facod
as an AC-component.

Detinition 5. 2. p€ /* is included in an AU-component iff there exists an AC-component Nao= (FacTacs
Fadand pe€ P a.

+ €T is included in an AC-component iff there exists an AC-component N = (P Taes Fae) and p& T aes

Definition 5. 3. Let N=(,T3F) be an AC net. N is called a Strong I1 AC net iff;

Y (p ) EPXP, (p Ng #Z& and p" Ty =Y 600:€q" v 60 —1p 7.

Figure (5. 1) illustrates a general AC net, but it is not a Strong [T AC net (because pf g, but 2446, have
different post-sets). A Strong [1 AC net is shown in Fig. (5. 23, In Fig. (5. 2), as p; Cpr and 5.4 have the
same posT-set, i.e. 7y =¢; , 1his net is a Strong 1T AC net. Figure (5. 3) illusirates an Extended Free Choice

ner,

?O;ﬂ< ) LD? ***”L:QJ lﬁn“’}f{ﬁ'@f

! s 3
N f;*Q;'UT’O,q Oy Lﬂ A0
Fig. 5.1  General AC net g, 502 Srong 1T AC et Fig, 5. 3 Extended Diee choice net

It is casy to fird that Extended Free Choice nets are included in Strong 1T AC nets, and Strong [1 AC nets
are included in AC nets. This can be i lnstrated by Fig. (5. 4). Therefore, Strong 11 AC nets are also an impor-
tant suhclass of AC nets which could be widely applied in many areas.

§.2 Liveness of Strong II AC nets

/ Tn this section. a liveness theorem for Strong 11 AC net
/A( net thcndod [res cheice n§ )
is presented.

‘\ Sffﬂng ” AC “'3_1/// Proposition 5. 1. et R be a trap in a Strong 1T AC net

N=(P,T:F). Il t€ AC-component and (" [NR=¢7, then

Fig. 5.4 Relation among AC nets, . o
Strong 11 AC nets and EFC nets Y p€ it prETR

Proof. From Definition 5. 3 and + € AC-component.
YO Ep o . Moreover, i NMR=@, so ' (NR=2. Therefore, £ & R, From the gencrality of +', p~
& " R. Proposition holds. ]
Algorithm 3. Find the maximnm trap of a minimal siphon H in Strong 11 AC net.
1. Let IFP=-Fi. 2 =(H'", T F' .M ,)= system generated hy I,
2. F 3 ¢€T", such that £ NII=¢& et t=1p}). then
il p&€ AC component, then denote T, ., =1{p"t, A, =1{p):
if p& AC-component, then denote T =1}, A =1{p}:
else stop.
30 Let [I'« IF — Ao 3 = IS T F M D= system gencrated by 11, ieit 1.

1. I H'— . stops else goto 2.

©|v[
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After Algorithm 3, assume /=m and denote Ap =H's Th.y="H', then An g is a trap (maybe empty)
which is needed. In step 2, let t={p} be deduced from Theorem 3. 1. In step 2. if p&€ AC-component, then,
from Propesition 5. 2, we know p* =R (R is a trap), so, denote T,={p"}. As [IJ] is finite, the algorithm
must be stopped at step 2 or step 1.

Corollary 5. 1. Let (A,), ., ., be a partition of minima! siphon 11 in Strong II AC net by the ahove zlgo-
rithm, then ¥ ¢ €7 (isim+ 1), firing ¢ can only add markings 10 A, (<17}, not add marking to A.(22=1).

Lemma 5. 1. T.eit AP, (A0 ,..4: be a partition of 4. *<" be the order relation on the set markings of A
defined by

M <M= ke [1.MIY ik, MAY=M(A) and M (A)<"MC(A,).

Gyiven an initial ¢finite) marking of A, M4, there can not exist an infinite series of markings of A. starting
‘rom M, and strictly decreasing with respect to <.

Proof. If such an infinite series exists, then either A is infinite, or A is not finitely marked. In both cas-
es, we 0otain a contradiction. ]

Next, the sufficient and necessary condition of liveness on AU ner is given.

Theorem 5. 1. Let X={(N,M,) be a Strong TI AC system, X is live & every (minimal) siphon contains a
marked (rap.

Proof. <= From Lemma 3. 2. it can be deduced that AC system is live.

= Assume there exists a minimal siphon /7, such that all traps are unmarked. From Algorithm 3. we can
abtain a partition (A,), ..., of I1. As A, ., is the maximum trap, we have M(A,._;)=0

If m=0, then H is the trap. But 7 is unmarked, so X is not live. This contradicts the liveness of Z.
Thereforz, in the following, we only consider m>=0.

Let MY be a marking of Ff under M,. As X is live, there must exist a firing sequence ¢ (maybe o= @),
such that My[e==M,. and t.{let 1 be the first enabled transition in H " ) is enabled in M,.

Let po€ " a5V M [t.> M. MY be a marking of IT under M,. Let p, € A (7<Zm+1, because A5 a
trap and unmarked ).

1. I po€ AC-component, then t,& T, firing tys we have M <M (from Corollary 5. 1),

2. 1l po& AC-component and ¢, €T, then, {iring 7o, we have M <M{'Urom Corollary 5.1).

3, Tf po& AC-component and ¢o &7, then, ¥ tE7T,, ¢ and £, must be concurrently cnabled. So., firing z.
we also have MY < MY (from Corollary 5. 1).

¥ is lives s0 according to the above methad, we can construct an infinite series of markings of Ff. starting
from M{" and strictly decreasing with respect to <. From Lemma b. |, we know it is impossible. We obtain a
contradiction. So every minimal siphon must contain a marked trap, Theorem holds. 1

From this theorem. it is ezsy to deduce the following corollary.

Corollary 5. 2. Let N=(7,13/) be a Sirong 11 AC net. N is structurally live iff every minimal siphon
tontains a Lrap.

Two simple examples are given o dlustrate Theorem 3. 1:

Example 5. 1. The Strong 11 AC system in Fig. (5. 5} contains a minimal siphon D= {p,,p.}, and D con
lains a trap :p,spa}. As psis marked, then this system is live. .

Ezample 5. 2. The Strong Il AC system in Fig. (5. ) containe a minima! siphon D)= {p,,ps}. bur D does
not contzin any marked trap. It is easy to verify that this system is not live.

5.3 Safeness and liveness of Strong 1I AC nets
From Thearem 5. 1, Strong 11 AC nct satisfics livencss monotonicity , so {rom Theorem 3. 3, we can easily

deduce the following theorem;
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Fig. 5.5 A living Strong II AC system Fig. 5.6 A no living Strong 1T AC svstem
L £ g £

Theorem 5.2. A Strong 11 AC system I= (N, M;) Is live and sale ¢

(1) every mumumal siphon H in N is a marked trap;

2y | NHl= NHI=1;

(3) ¥ p& P muost be included in a minimal siphon.

Corollary 5. 3. A Strong Il AC net N=(P,T;F) is structurally live and safe &

(1) cvery minimal siphon If in N is a trap: &

@2y [N =1 NHI=1;

(3) Y p& F must be included in a minimal siphon.

Similar with the Strong 1 AC ners. the (structural) safeness and (structural) liveness of Strong 1T AC net
van be described by net structure, The same polynomial time algorithm (see algorithm in Section 3. 3) can be

used to verify whether the Strong 11 AC net is live and safe.

6 Conclusions

In this paper, we have deelt with various issues related o the liveness and safeness of AC nets. Although
the liveness and safeness of the general AC nets have not been solved completely, it presents a sufficient and
recessary condition for those AC nets of which liveness has monotonicity and 2 polynomial time algorithm to de-
cide whether a given AC system is live . safe and satisfics livencss monotonicity. Then two subclasses of AC nets
(Strong 1 AC nets, Strong IT AC nets? which have liveness monotonicity have been ana.yzed thoroughly. From
the momnotonicity of liveness on AC neis, we have learned why the general AC nets are difficult 10 sclve. More-
over, this feature explains partally the non-monotonicity of the livencss on general Petri nets. As the liveness
of general AC nets has not been solved completely, [urther work on these issues is planned. On the other hand,
we have a conjecture that the AC nets whicl'satisly liveness monotonicity are the mezximal subclass of Petri nets
which can be decided in polynomial-time for liveness and safencss. This is a very challenging problem and also a

direction that we plan to follow.
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