姿态控制人物生成技术综述
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Pose-guided Human Generation: A Review
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    生成技术的飞速发展揭示了相关技术在实际应用中的潜力,姿态控制人物生成技术(Pose Guided Person Image Generation)的核心目标是将输入的人物图像转换为指定姿态,同时保持人物外观的高度一致性.其技术可以广泛应用于虚拟试穿与时尚行业、广告内容生成领域的视频生成与编辑以及多模态结合生成等多个应用场景,推动用户体验和技术创新的进步.然而,尽管技术已经取得了显著进展,仍面临着多个挑战,包括姿态迁移过程中外观信息的有效提取和重排、不可见信息的生成、一致性保持、模型的高效训练与使用等.本文基于现有技术的挑战,详细分析了当前主流的姿态控制生成方法应对挑战的策略,并探讨了它们在实际应用中的可行性和局限性.同时,文章还讨论了姿态控制生成技术的常用生成模型,以及不同的姿态信息表示方法.此外,文章整理讨论了该技术常用的数据集大小、特点等信息、各项测试基准,并从虚拟试穿、视频生成与编辑、多模态结合生成等应用场景展开了讨论.此外,文章还揭示了目前方法仍遇到的个性化信息的保留、复杂场景的生成以及模型效率与实时性能等挑战,并讨论姿态控制生成技术可能的未来发展趋势,旨在为相关领域的研究人员提供系统的总结与参考,以期推动该技术在各行业中的应用与创新.

    Abstract:

    The rapid development of generative technologies has revealed the potential for real-world applications of related technologies. The core objective of Pose Guided Person Image Generation (PGPIG) is to transform an input human image into a specified pose while maintaining a high level of appearance consistency. This technology can be widely applied in various fields such as virtual try-on and fashion, video generation and editing in advertising, and multimodal content generation, driving advancements in user experience and technological innovation. However, despite significant progress, the technology still faces multiple challenges, including effective extraction and rearrangement of appearance information during pose transfer, generation of unseen information, consistency preservation, and efficient model training and deployment. Based on the existing challenges, this paper provides a detailed analysis of the strategies employed by current mainstream pose-guided generation methods to address these issues, discussing their feasibility and limitations in practical applications. Additionally, the paper explores the commonly used generative models and pose representation methods in pose-guided generation. It also reviews the datasets, their sizes, characteristics, and evaluation benchmarks used in this field. Furthermore, the paper discusses the applications of this technology in virtual try-on, video generation and editing, and multimodal content generation. It highlights the remaining challenges, such as the retention of personalized information, generation in complex scenes, and model efficiency and real-time performance. Finally, the paper discusses potential future development trends of pose-guided generation technology, aiming to provide researchers with a systematic summary and reference to promote its application and innovation across industries.

    参考文献
    相似文献
    引证文献
引用本文

李玘芮,励雪巍,赵奇,李杰,李玺.姿态控制人物生成技术综述.软件学报,2026,37(5):

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-19
  • 最后修改日期:2025-07-11
  • 录用日期:
  • 在线发布日期: 2025-09-23
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号