基于多模态异质图表征的专利推荐算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62276277); 广东省技术转移智能匹配工程技术研究中心项目(2022A175); 广东省知识产权大数据重点实验室(2018B030322016)


Patent Recommendation Algorithm based on Multimodal Heterogeneous Graph Network Representation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过专利推荐将科技创新成果转化为现实生活中的实际应用,让科学技术实现经济价值,对社会经济发展具有重大意义.然而,现有的专利推荐算法往往忽略了专利本身所包含的多模态信息,导致推荐结果无法全面反映专利的真实价值与应用潜力,进而影响专利与企业需求之间的匹配精度.为此,本文提出了一种基于多模态异质图网络的专利推荐算法(Multimodal Heterogeneous Graph Network for patent recommendation, MHGN).首先,本文利用预训练表征模型将专利的多属性文本信息、图像,以及企业信息进行初始化表征学习.随后,采用图注意力网络学习企业在不同模态下的偏好表征,在此基础上,本文进一步基于偏好表征的相似度学习企业-专利交互的关系权重,并设计了一个图卷积网络来学习企业和专利的节点偏好表征.最后,本文引入了适配向量,并使用注意力机制对节点偏好表征与多模态表征进行融合.在实验验证上,本文构建了4个真实的高校向企业转让的专利数据集,并与7个先进的基线模型进行了实验对比,结果表明,本文的模型在各项指标上均显著优于基线模型.本文将公开这四个数据集及模型的源代码,为专利推荐和科技成果转化领域的研究提供坚实的数据和模型基础,推动科技服务科技.

    Abstract:

    The transformation of scientific and technological innovations into practical applications through patent recommendation is of great significance for realizing the economic value of science and technology and promoting socio-economic development. However, existing patent recommendation algorithms often overlook the multimodal information embedded in patents, leading to recommendation results that fail to comprehensively reflect the value and application potential of patents. Consequently, this affects the accuracy of matching patents with the needs of companies.To address this issue, we propose a novel patent recommendation algorithm based on a Multimodal Heterogeneous Graph Network (MHGN).Our approach first utilizes pre-trained models to initialize the representation of the multimodal information, including the textual and image attributes of patents as well as companies information.Then, a graph attention network is employed to learn the preference representations of companies across different modalities.Based on this, we further learn the relationship weights of company-patent interactions based on the similarity of preference representations, and design a graph convolutional network to learn the node preference representations of companies and patents.Finally, to better integrate the multimodal information, we introduce an adaptation vector and use an attention mechanism to integrate the multimodal features.Additionally, we construct four real-world patent datasets from university-to-company transfers and conducted experiments comparing our model with seven advanced baseline models.The results demonstrate that our model significantly outperforms the baselines across all evaluation metrics.We release both the datasets and the source code of our model, providing robust data and model support for future research in patent recommendation and the transformation of scientific innovations.

    参考文献
    相似文献
    引证文献
引用本文

赖培源,卢伊虹,廖德章,王昌栋,戴青云,赖剑煌.基于多模态异质图表征的专利推荐算法.软件学报,2026,37(5):

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-27
  • 最后修改日期:2025-08-29
  • 录用日期:
  • 在线发布日期: 2025-09-23
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号