基于链路聚合的图欺诈检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP309

基金项目:

国家重点研发计划 (2022YFB2703100)


Path-aggregation-based Graph Fraud Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着信息技术发展, 信息网络、人类社会与物理空间交互加深, 信息空间风险外溢现象严峻. 欺诈事件激增, 欺诈检测成为重要研究领域. 欺诈行为给社会带来了诸多负面影响, 且逐渐呈现出智能化、产业化及高度隐蔽性等新兴特征, 传统的专家规则与深度图神经网络算法在应对上显得愈发局限. 当前反欺诈算法多从节点自身与邻居节点的局部信息出发, 或聚焦于用户个体, 或分析节点与网络拓扑关系, 或利用图嵌入技术学习节点表示, 这些视角虽然能具备一定的欺诈检测能力, 但是忽略了实体长程关联模式的关键作用, 缺乏对于海量欺诈链路之间共性模式的挖掘, 限制了全面的欺诈检测能力. 针对以上欺诈检测算法的局限性, 提出一种基于链路聚合的图欺诈检测模型PA-GNN (path aggregation graph neural network), 包含不定长链路采样, 位置关联的统一链路编码, 链路信息交互聚合, 以及聚合关联的欺诈检测. 从节点出发的若干链路之间通过全局模式交互与相似度比对, 挖掘欺诈链路之间的共性规律, 从而更全面地揭示欺诈行为之间的关联模式, 并通过链路聚合继而实现欺诈检测. 在金融交易、社交网络和评论网络这3类欺诈场景下的多个数据集上的实验结果表明, 所提方法的曲线下面积(AUC)和平均精度(AP)指标相较于最优基准模型均有显著提升. 此外, 该方法为欺诈检测任务挖掘了潜在的共性欺诈链路模式, 驱动节点学习这些重要的模式并获得更具表现力的表示, 具备一定的可解释性.

    Abstract:

    With the development of information technology, the interaction between information networks, human society, and physical space deepens, and the phenomenon of information space risk overflow becomes more severe. Fraudulent incidents have sharply increased, making fraud detection an important research field. Fraudulent behavior has brought numerous negative impacts to society, gradually presenting emerging characteristics such as intelligence, industrialization, and high concealment. Traditional expert rules and deep graph neural network algorithms are becoming increasingly limited in addressing fraudulent activities. Current fraud detection methods often rely on local information from the nodes themselves and neighboring nodes, either focusing on individual users, analyzing the relationship between nodes and graph topology, or utilizing graph embedding technology to learn node representations. Although these approaches offer certain fraud detection capabilities, they overlook the crucial role of long-range association patterns of entities and fail to explore common patterns among massive fraudulent paths, limiting comprehensive fraud detection capabilities. In response to the limitations of existing fraud detection methods, this study proposes a graph fraud detection model called path aggregation graph neural network (PA-GNN), based on path aggregation. The model includes variable-length path sampling, position-related unified path encoding, path interaction and aggregation, and aggregation-related fraud detection. Several paths originating from a node interact globally and compare their similarities, extracting common patterns among fraudulent paths, thus more comprehensively revealing the association patterns between fraudulent behaviors, and achieving fraud detection through path aggregation. Experimental results across multiple datasets in fraud scenarios, including financial transactions, social networks, and review networks, show that the area under the curve (AUC) and average precision (AP) metrics of the proposed method have significantly improved compared to the optimal benchmark models. In addition, the proposed method uncovers potential common fraudulent path patterns for fraud detection tasks, driving nodes to learn these important patterns and obtain more expressive representations, which offers a certain level of interpretability.

    参考文献
    相似文献
    引证文献
引用本文

邱天,贾凌翔,高杨,冯尊磊,高艺,宋明黎.基于链路聚合的图欺诈检测.软件学报,,():1-16

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-16
  • 最后修改日期:2025-02-05
  • 录用日期:
  • 在线发布日期: 2025-07-30
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号