小模型大数据:一种分析软件行为的代数方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

欧洲研究理事会高级研究基金(291652);国家自然科学基金(61300035)


Little Model in Big Data: An Algebraic Approach to Analysing Abstract Software Behaviours
Author:
Affiliation:

Fund Project:

European Research Council Advanced Grant (291652); National Natural Science Foundation of China (61300035)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    问题框架方法分析软件需求时需要通过借助领域知识及其之间的结构关系来论述用户的需求是可以被软件系统满足的.这类定性的可满足性论述支持早期需求决策,选择合理的软件体系结构和设计方案.但是,当前的移动软件需求方是偏好各异的用户个体,需求差异化明显,而且根据应用场景,这些需求会动态地发生变化.在这种情况下,现有的定性分析方法不再适用.大数据分析提供一种数据驱动的深度学习机制,为很多实践者采用.但依靠数据驱动的软件分析往往就事论事,仍然不能从根本上提供一个合理的论述来说明大量软件用户的需求到底是什么,也无法对可信软件的安全性和私密性提供可靠的论证.再多的数据也只能提供统计意义的表象,而无法彻底防范借用漏洞的攻击.尝试从提炼软件抽象目标行为的角度进一步深化问题框架的研究思路,针对各类个体行为建立概率模型,提出一种基于模型代数分析的方法,以避开纯粹数据驱动思路的大数据分析盲点.通过对安全和隐私性问题的分析,对所提出的方法可用性及局限性进行探讨,对未来大数据软件需求研究给予一定的启示.

    Abstract:

    The problem frame method typically uses domain knowledge in order to demonstrate that a software system can satisfy the requirements of stakeholders by specifying how machine relates to stakeholders' problems. Qualitatively, satisfiability discourse can guide a software engineer to make early decisions on what the right solution is to the right problem. However, mobile apps deployed to app stores often not only need to accommodate millions of individual users whose requirements have subtle differences, but also may change at runtime under varying application contexts. Requirements of such apps can no longer be analyzed qualitatively to cover all situations. Big data analysis through deep learning has been increasingly adopted in practice to replace deep requirements analysis. Although effective in making statistically sound decisions, the conclusions of pure big data analysis are merely a set of unexplainable parameters, which cannot be used to show that individual users' requirements are satisfied, nor can they reliably validate the trustworthiness and dependability in terms of security and privacy. After all, training with more datasets could only improve statistical significance, but cannot prevent software systems from the malicious exploitation of outliers. This paper attempts to follow Jackson's teaching of abstract goal behaviors as intermediate between requirements and software domains, and proposes an algebraic approach to analyzing the consequences of probabilistic software behavior models, so as to circumvent some blind spots of purely data-driven approaches. Through examples in security and privacy areas, the challenges and limitations to big data software requirement analysis are discussed.

    参考文献
    相似文献
    引证文献
引用本文

俞一峻,刘春.小模型大数据:一种分析软件行为的代数方法.软件学报,2017,28(6):1488-1497

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-10-09
  • 最后修改日期:2016-10-26
  • 录用日期:
  • 在线发布日期: 2017-02-21
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号