基于插桩分析的Java虚拟机自适应预取优化框架
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60673146, 60703017, 60736012, 60603049 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant Nos.2006AA010201, 2007AA01Z114 (国家高技术研究发展计划(863)); the National Basic Research Program of China under Grant No.2005CB321600 (国家重点基础研究发展计划(973)); the Beijing Natural Science Foundation of China under Grant No.4072024 (北京市自然科学基金)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    对堆上数据的频繁访问是Java程序的主要开销,为此,研究者们通过虚拟机收集堆上数据访问的信息,而后采用预取或垃圾收集来改进内存性能.常用的收集方法有采样法和插桩法,但二者无法同时满足细粒度和低开销的要求.针对这两个要求,提出基于插桩分析的虚拟机自适应预取框架,该框架通过插桩收集信息,并根据程序运行时的反馈自适应地调整插桩并进行预取优化.实验结果表明,自适应预取优化在Pentium 4上对SPEC JVM98和Dacapo有不同程度的提高,最高的达到了18.1%,而开销控制在4.0%以内.

    Abstract:

    Accessing to heap data brings main overhead for Java application. VM (virtual machine) researchers utilize prefetch or garbage collection to improve the performance, with the help of collected information of accesses to heap. The general methods to collect information are sampling and program instrumentation, however, they can't satisfy fine granularity and low overhead simultaneously. To satisfy these two requirements, this paper proposes an instrument- analysis framework for adaptive prefetch optimization in JVM, which instruments code to collect profiling information, and guide to dispatch code and perform prefetch according to feedback. The experimental results show that it achieves up to 18.1% speedup in industry-standard benchmark SPEC JVM98 and Dacapo on the Pentium 4, while the overhead is less than 4.0%.

    参考文献
    [1]Inagaki T,Onodera T,Komatsu H,Nakatani T.Stride prefetching by dynamically inspecting objects.In:Crocker R,ed.Proc.of the ACM SIGPLAN 2003 Conf.on Programming Language Design and Implementation.New York:ACM Press,2003.269-277.
    [2]Adl-Tabatabai AR,Hudson RL,Serrano MJ,Subramoney S.Prefetch injection based on hardware monitoring and object metadata.In:Pugh W,Chambers C,eds.Proc.of the ACM SIGPLAN 2004 Conf.on Programming Language Design and Implementation.New York:ACM Press,2004.267-276.
    [3]Huang X,Blackburn SM,McKinley KS,Moss JEB,Wang Z,Cheng P.The garbage collection advantage:Improving program locality.In:Vlissides J,Schmidt D,eds.Proc.of the 19th Annual ACM SIGPLAN Conf.on Object-Oriented Programming,Systems,Languages,and Applications.New York:ACM Press,2004.69-80.
    [4]Chilimbi TM,Larus JR.Using generational garbage collection to implement cache-conscious data placement.In:Peyton S,Jones R,eds.Proc.of the 1st Int'l Conf on Int'l Symp.on Memory Management.New York:ACM Press,1998.37-48.
    [5]Chilimbi TM,Davidson B,Larus JR.Cache-Conscious structure definition.In:Ryder BG,Zorn BG,eds.Proc.of the ACM SIGPLAN'99 Conf.on Programming Languages Design and Implementation.New York:ACM Press,1999.13-24.
    [6]Arnold M,Hind M,Ryder BG.Online feedback-directed optimization of Java.In:Lbrahim M,Matsuoka S,eds.Proc.of the 17th ACM SIGPLAN Conf.on Object-Oriented Programming,Systems,Languages,and Applications.New York:ACM Press,2002.111-129.
    [7]Holzle U,Ungar D.Reconciling responsiveness with performance in pure object-oriented languages.ACM Trans.on Programming Languages and Systems,1996,18(4):335-400.
    [8]Pettis K,Hansen RC.Profile guided code positioning.In:Fischer BN,ed.Proc.of the ACM SIGPLAN'90 Conf.on Programming Language Design and Implementation.New York:ACM Press,1990.16-27.
    [9]Paleczny M,Vick C,Click C.The Java hotspot server compiler.In:Wold S,ed.Proc.of the Java Virtual Machine Research and Technology Symp.USENIX Association,2001.1-12.
    [10]Standand performance evaluation corporation (SPEC).JVM Client'98 (SPECjvm'98).1998.http://www.spec.org/osg/jvm98
    [11]Dacapo.http://www-ali.cs.umass.edu/DaCapo/
    [12]Java hotspot virtual machine 2.0.2000.http://java.sun.com/javase/technologies/hotspot/
    [13]BEA JRockit 5.0.http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/jrockit/
    [14]Jikes research virtual machine (RVM).http://www.ibm.com/developerworks/oss/jikesrvm
    [15]Dynamic runtime layer virtual machine (Drlvm).http://harmony.apache.org/subcomponents/drlvm/index.html
    [16]Wu Y,Breternitz M,Quek J,Etzion O,Fang J.Characterizing the memory behavior of Java workloads:A structured view and opportunities for optimizations.In:Vernon M,ed.Proc.of the 2001 ACM SIGMETRICS Int'l Conf.on Measurement and Modeling of Computer Systems.New York:ACM Press,2001.194-205.
    [17]Arnold K,Gosling J,Holmes D.The Java Language Specification.3rd ed.,New York:Prentice Hall PTR,2000.
    [18]Intel Corporation.Intel Pentium 4 processor optimization reference manual.http://www.intel.com/design/pentium/manuals/248966.pdf
    [19]Intel Corporation.VTune performance analyzer.http://www.intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邹 琼,伍 鸣,胡伟武,章隆兵.基于插桩分析的Java虚拟机自适应预取优化框架.软件学报,2008,19(7):1581-1589

复制
分享
文章指标
  • 点击次数:5033
  • 下载次数: 6759
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2006-12-11
  • 最后修改日期:2007-03-29
文章二维码
您是第19772092位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号