
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.17, No.6, June 2006, pp.1470−1484 http://www.jos.org.cn
DOI: 10.1360/jos171470 Tel/Fax: +86-10-62562563
© 2006 by Journal of Software. All rights reserved.

PESOI: Process Embedded Service-Oriented Architecture
∗

Wei-Tek Tsai+, Yinong Chen, Chun Fan

(Department of Computer Science and Engineering, Arizona State University, Tempe AZ, 85281, USA)

+ Corresponding author: Phn: +1-480-7276921, Fax: +1-480-9652751, E-mail: wtsai@asu.edu

Tsai WT, Chen Y, Fan C. PESOI: Process embedded service-oriented architecture. Journal of Software, 2006,
17(6):1470−1484. http://www.jos.org.cn/1000-9825/17/1470.htm

Abstract: Service-Oriented Architecture (SOA) has drawn significant attention recently, and numerous
architecture approaches have been proposed to represent SOA-based applications. The architecture of SOA-based
applications is different from traditional software architecture, which is mainly static. The architecture of an
SOA-based application is dynamic, i.e., the application can be composed at runtime using existing services, and
thus the architecture is really determined at runtime, instead of design time. SOA applications have provided a new
direction for software architecture study, where the architecture can be dynamically changed at runtime to meet the
new application requirements. This paper proposes a Process-Embedded Service-Oriented Infrastructure to build
SOA-based applications. This infrastructure embeds the entire software lifecycle management and service-oriented
system engineering into the application developed on this infrastructure. Thus, the users can easily re-develop the
applications during operation to meet the changing environments and requirements, through the supports provided
by the embedded infrastructure.
Key words: service-oriented computing; service-oriented architecture; software architecture; architecture

classification

1 Introduction

Service-Oriented Architecture (SOA) has received significant attention recently as major computer and
software companies such as HP, IBM, Intel, Microsoft, and SAP, have all embraced SOA, as well as government
agencies such as DoD (US department of defense) and NASA. The initial focus on SOA has been the development
of interoperability standards and protocols, such as WSDL, SOAP, UDDI, and recently numerous SOA standards
have been proposed including ebSOA, ebXML, CPP, CPA, BPEL4WS, OWL-S, and RDF.

SOA is a new software development paradigm in which software developers are grouped into three parties in
terms of their responsibilities: the application builders (service requesters), the service brokers (service publishers),
and the service providers (service developers), which is referred as the standard SOA. Service providers develop
services independent of potential applications by following the open protocols and standards. Service brokers
publish the available services to the public such that the application builders can look up desired services and
compose the target application using the services. Thus a target application is built through service discovery and
service composing instead of traditional process of designing and coding software.

SOA has the following characteristics that are different from traditional software:

∗ Received 2006-02-15; Accepted 2006-03-14

 Wei-Tek Tsai, et al.: PESOI: Process Embedded Service-Oriented Architecture 1471

Standard-Based interoperability: SOA emphasizes on stand-based interface, protocols, communication,

coordination, workflow, discovery, collaboration, and publishing via standard protocols. These standards allow
services developed in different computing platforms can interoperate with each other with the knowledge of service
specifications only.

Dynamic composition via discovery: SOA provides a new way of application development by composing
services just discovered. Furthermore, the composition and discovery can be carried out at runtime.

Dynamic governance and orchestration: Execution of services needs to be controlled and several
mechanisms are available for execution control. One is service governance by policy. Specifically, policies can be
specified, checked, and enforced during both SOA development time and runtime to ensure the system complies
with the organization requirements. The other is orchestration where process execution will be coordinated by a
central controller and it is responsible for scheduling the execution of services that may be distributed across a
connectivity network such as ESB (enterprise service bus).

In
te

gr
at

io
n

ar
ch

ite
ct

ur
e

Q
oS

, s
ec

ur
ity

, m
an

ag
em

en
t

&
 m

on
ito

rin
g

Enterprise components

Services (composite services)

Business process choreography

Presentation: Portlets & WSRP

Operational systems

A complex system is usually represented in layers, in
Ref.[1], a 5-layered architectural template is suggested for
SOA applications, as illustrated in Fig.1: Presentation,
Business process choreography, Services, Enterprise
components, and Operational systems, with two supporting
mechanisms: Integration architecture and Management &
monitoring. The supporting mechanisms can be applied to
each of the five layers.

Fig.1 Layers of SOA

Several studies have been conducted to investigate the architecture of SOA applications, e.g., IBM SOA
Foundation architecture[1−4], Microsoft’s .Net 2005 (Whitehorse)[5], SAP’s NetWeaver[6], OASIS’s FERA[7],
enterprise SOA applications such as enterprise SOA[8] and Service-Oriented Enterprise (SOE)[9], and self healing
architecture PKUAS[10].

Software architecture has been an active research areas in software engineering for the last 10 years, with
numerous papers and books, such as Refs.[1,2,7−18]. Currently, several websites have been devoted to software
architecture such as:

• Resources for Software Architects at http://www.bredemeyer.com/;
• Global Enterprise Architecture Organization (GEAO) http://www.geao.org;
• Software Engineering Institute at CMU software architecture at http://www.sei.cmu.edu/architecture/;
• Software architecture resource Sites at http://www2.umassd.edu/SECenter/SAResources.html;
• Handbook of Software Architecture at http://www.booch.com/architecture/index.jsp.

Most of the software architecture research projects focus on static architecture, where the emphasis is on:
• Architecture styles (layered architecture, object-oriented architecture, client-server architecture and so

on);
• ADL (architecture description language) and see the list of available ADLS at the

http://www.sei.cmu.edu/architecture/adl.html;
• Architecture evaluation and analysis such as SAAM;
• Documentation of existing architectures, practices, and patterns;
• Architecture views such as module structure, process structure, conceptual structure, physical structure,

call structures, data flow structure, control flow, and class structure, execution architecture; and
• Formalization and specification of software architecture.

 1472 Journal of Software 软件学报 Vol.17, No.6, June 2006

Recently, several studies have focused on dynamic software architecture, i.e., the software architecture that

modifies its structure during execution[13]. The current research focuses on the formal specification techniques that
can be used to reason and analyze dynamic architectures. A variety of reconfiguration rules such as graph rewriting
rules, process algebra (such as CCS and CSP), predicate calculus, and architecture modification language (AML)[19]
have been proposed to specify and analyze dynamic architectures[13]. However, these studies have not focused on
the dynamic SOA yet. One significant difference between the existing dynamic architecture and SOA is that the
dynamic architecture of SOA is fully integrated with many aspects of software development, such as service
composition, code generation, and deployment.

2 Dynamic Architecture and Lifecycle Management

Due to the dynamic nature of SOA, the architecture of SOA-based systems has the following characteristics
distinct from traditional software architectures: (1) Dynamic architecture via dynamic composition; (2) Lifecycle
management embedded in the operation infrastructure architecture.

2.1 Dynamic architecture

Traditional software architecture is static. Once the software is developed using components and connections
among the components, it cannot be changed. In SOA, the basic building block is not a component but a service.
Services are loosely coupled and can be modeled as connected to a bus-like communication backbone, as described

in ESB[20]. Connections among the services are
controlled by a control center, which is also attached
to the communication backbone, as illustrated in
Fig.2.

The control center is a composition manager that
specifies and controls the application composition
configuration via a workflow specification, which
defines how the services shall be connected together

to deliver the desired results and how the messages are transferred among the services. With this kind of
architectures, a user can compose applications with different architectures or even different architecture styles, such
as a chain, a ring, a star, a layered structure, etc. This kind of architectures is in fact virtual. The connection
restrictions can be enforced by policy and thus can be changed dynamically.

Control centerCommunication backbone

… Service N Service 5 Service 4

Service 3Service 2 Service 1

Fig.2 A generic SOA application architecture

2.2 Lifecycle management

Another distinguishing characteristic of the SOA-based application architecture is that the lifecycle
management can be embedded in the operation infrastructure to facilitate dynamic software composition. In this
way, the SOA application development infrastructure and operation infrastructure can be merged into a single and
unified SOA infrastructure. The development infrastructure may include: Modeling, function and policy
specification, analysis, design, code generation, and verification and validation such as model checking and testing.
The operation infrastructure may include: Code deployment, code execution, policy enforcement, monitoring,
communication, and system reconfiguration.

Both IBM and Microsoft take this approach in their SOA designs. In IBM SOA Foundation Architecture[3,4],
development activities (modeling and assembly) and operation activities (deployment and management) are
integrated into a single process as illustrated in Fig.3.

 Wei-Tek Tsai, et al.: PESOI: Process Embedded Service-Oriented

Architecture 1473

The architecture consists of four phases: modeling,
assembling, deployment, and management. Furthermore,
runtime governance activities are performed to provide
guidance and oversight for the target SOA application. The
activities in the four phases are performed iteratively:

Modeling

Management Assembling

• Modeling: This phase models the user requirements
in a system model with a set of services; Deployment

Governance
and

processes
• Assembling: This phase composes applications using

services that have been created or discovered at
runtime according to the model specified in the
previous phase;

Fig.3 IBM SOA foundation architecture

• Deployment: In this phase, the runtime environment is configured to meet the application’s
requirements, and the application is loaded into that environment for execution;

• Management: After the application is deployed, the services used in the application are monitored.
Information is collected to prevent, diagnose, isolate, and/or fix any problem that might occur during
execution. These activities in management phase will provide the designer with better knowledge to
manage the application.

The entire process will be controlled and orchestrated by the governance policies. IBM SOA foundation
architecture is based on such a model-driven application development process. This looping back process along with
the governance and other processes can be delivered together with the target SOA application to the user. When
there is a need of changing the application architecture, the user can re-specify the system model, and the
application can be re-assembled and re-deployed.

2.3 IBM WebSphere integration reference architecture

IBM WebSphere Integration Reference Architecture[2,21] is a SOA application model, which provides a set of
services to enable business integration in a large diverse enterprise environment. Figure 4 shows the key integration
functions needed to provide comprehensive and enterprise–level solutions. The core of the WebSphere Integration
Reference Architecture is the connectivity services, which provides the infrastructure to support and to instantiate
the Enterprise Service Bus (ESB)[20].

IT
 s

er
vi

ce
s

m
an

ag
em

en
t

D
ev

el
op

m
en

t s
er

vi
ce

s

Information
services

Process
services

Interaction
services

Business innovation and optimization
services

Application
& information

assets

Business
appliation
services

Partner
services

Connectivity services

Infrastructure services

Fig.4 IBM WebSphere integration reference architecture

2.4 Microsoft service-oriented application development framework

Microsoft also takes this approach in Visual Studio .Net 2005 (Whitehorse)[5], which has the capabilities for

 1474 Journal of Software 软件学报 Vol.17, No.6, June 2006

modeling, architecture, code generation, code deployment, and code execution. In .Net 2005, an SOA application
designer can select services from a service pool and define the architecture to specify how services can
communicate with each other. After completing the architecture block diagram, the designer can execute it to see if
the application can work as desired without knowing the details of the services used. The application can be easily
changed by changing the architecture model. Figure 5 illustrates the architecture block diagram of an SOA-based
application developed in .Net 2005.

Fig.5 Microsoft whitehorse SOA designer

3 PESOI: Process-Embedded Service-Oriented Infrastructure

PESOI (process-embedded service-oriented infrastructure) is a framework developed at Arizona State
University, which integrates the development infrastructure into the operation infrastructure, so that the application
can be re-developed during its operation. In addition to the capacities that WebSphere and .Net 2005 have, PESOI
also includes explicit Verification and Validation (V&V) capacities, a reconfiguration process, and a model driven

approach. This section presents the overall
design of PESOI, lifecycle, and the dynamic
architecture of the applications developed on
PESOI.

Operation
infrastructure

Infrastructure
embedded
application

Embedding

Model of the
application

Development
infrastructure

SOA
application

- -

Figure 6 shows the layers of a related SOA
application. First, the application is decomposed
into the model consisting of patterns of
sub-models. Each of the sub-models is developed
using a tool in the development infrastructure,
which in turn, maps the sub model into an
executable code in the operation infrastructure.

Figure 7 outlines the lifecycle (development
and operation phases) of applications developed
on PESOI, which consists of the following
phases: Modeling and specification, Verification Fig.6 Infrastructure-Embedded SOA application

 Wei-Tek Tsai, et al.: PESOI: Process Embedded Service-Oriented Architecture 1475

of specification, Code generation for validation, Validation (simulation and testing), Assembling and deployment,
Operation and monitoring, Evaluation at runtime, and Reconfiguration.

Validation

Simulation
code

generation
Verification

Modeling
specificationRequirement

Assembling
deployment Reconfiguration Operation

monitoringEvaluation

Fig.7 PESOI reference architecture

These phases form a feedback loop, where the last phase reconfiguration is connected to the first phase
modeling and specification. Each of the phases in PESOI is elaborated as follows:

• Modeling & Specification phase: This phase consists of two sub-phases. The modeling sub-phase is at
architecture or component level, similar to Microsoft architecture model shown in Figure 6 and IBM
SCA/SDO model. The specification sub-phase uses PSML-S process specification and modeling
language, which is similar to BPEL4WS, to define the flow and conditions between the components;

• Verification phase: It contains activities such as Completeness & Consistency (C&C) analysis, model
checking, test case generation based on the functional and policy specification;

• Assembling phase: It consists of automated code generation from the process specification and binding
of external services to obtain the executable code;

• Validation phase: It runs the executable in a simulation environment and validates the code via testing;
• Deployment phase: This phase deploys executable code into the execution environment. It involves

binding the addresses of real devices into the code. Monitors and data collectors will be embedded into
the code;

• Execution and monitoring phase: The executable code is executed in the real environment. The monitors
and data collectors will collect and record data for later analysis;

• Evaluation phase: It analyzes the data, evaluates reliability and performance, and provides input for the
reconfiguration phase;

• Reconfiguration phase: It takes reliability evaluation results as input and decides if a rebinding is
necessary to replace a less reliable service through rebinding a reliable services. A service farm contains
the backup spares need for rebinding. The services in the farm are tested and ranked in an independent
process such as group testing[22]. If the application requirement is revised by the user, a re-composition
or re-architecture needs to be performed. In this case, the composition or architecture of the application
will be modified. The modified application needs to go through the entire development process, and thus,
the development infrastructure needs to be embedded into the application to enable the reconfiguration.

The rest of the paper will talk about issues related to PESOI. Specifically, Section 4 will discuss the modeling
issues in PESOI, Section 5 will discuss the dynamic reconfiguration issues, and Section 6 will talk about the
verification and validation issues in PESOI.

4 Single Model Multiple Analyses (SMMA)

Numerous modeling projects have been proposed to model software, ranging from informal descriptions to
semi-formal models, such as a state model, to formal models, such as process algebra CCS, CSP and ACP[1,14,16−18].
For SOA applications, informal methods are not applicable because one can not produce code from informal

 1476 Journal of Software 软件学报 Vol.17, No.6, June 2006

descriptions automatically. However, strict formal methods will need more time to mature before they can be
applied to SOA applications. Most current approaches use lightweight formal techniques that can produce software
design and code automatically, and can be easily used by practitioners due to the visualization capabilities of these
models.

Currently, the UML from OMG [http://www.omg.org/technology/documents/formal/uml.htm] is the de factor
industry standards for specifying and analysis of software models, particularly for object-oriented programs. The
question is whether UML is suitable for SOA. Particularly, is UML suitable for SOA applications with on-demand
dynamic composition?

UML 2.0 has 13 different types of diagrams, divided into three categories:
• Structure models: Class Diagram, Object Diagram, Component Diagram, Composite Structure Diagram,

Package Diagram, and Deployment Diagram;
• Behavior models: Use Case Diagram, Activity Diagram, and State Machine Diagram;
• Interaction models: Sequence Diagram, Communication Diagram, Timing Diagram, and Interaction

Overview Diagram.
The UML has more than 20 models. While each individual model within UML is useful for modeling and

analyses for certain aspects of the system engineering, the fact that it has so many models is a concern. One problem
is that it is not possible to convert one model (for example Activity Diagram) to another model (such as State
Machine Diagram) automatically. Thus, a change in a model may need the involved engineers to manually update
the rest of models to keep these models consistent with each other. This does not bode well with on-demand
dynamic composition in SOA where code needs to be generated from the model, and possibly both the model and
the code need to be analyzed, verified, and validated dynamically at runtime using existing services.

We call the approach taken by UML the MMMA (multiple models multiple analyses) approach because it has
multiple models and each model has its own analysis techniques. In a typical MMMA approach, models are
interconnected with each other, but not fully integrated to each other, i.e., it is not possible to generate the rest of
models from one model. Thus, MMMA is error-prone during system updating, and thus it is not suitable for the
SOA environment, where models can be dynamically changed at runtime as applications are re-composed or
reconfigured.

On the other hand, if the development is based on a single model, all other models and analyses are
automatically derived from this model, the approach is called SMMA (single model multiple analyses) approach.
One of the characteristics of SMMA is that a designer can focus his/her attention on the single model only. If a
change is made, he/she can just update the primary model, and the rest of models and analyses can be automatically
generated. Specifically, once the primary model is updated, code can be automatically re-generated, completeness
and consistency analysis can be re-checked, simulation code can be automatically generated and simulation
performed, state model can be automatically updated based on the new model and so on. In this way, significant
system engineering tasks can be automatically performed. SSMA approach does not conflict with the principle of
“separation of concerns”. Instead, it makes sure that components created by other parties can interoperate
seamlessly. A demo of the SMMA approach in a network of service-oriented embedded robots can be viewed at the
website at http://asusrl.eas.asu.edu/EmbeddedExplorer/.

PESOI is the only infrastructure that has taken the SMMA approach, as shown in Fig.8, where PSML (process
specification and modeling language) is the single model and all the analyses are directly or indirectly based on this
model. PSML-S (PSML for Services) and PSML-P (PSML for Policies) are derived from PSML, which are used to
model the functionality and policies in the application, respectively[23]. Table 1 lists the operations and analyses that

 Wei-Tek Tsai, et al.: PESOI: Process Embedded Service-Oriented Architecture 1477

can be automatically performed on a PSML-S and PSML-P models.

Reconfiguration

Evaluation

Validation /
testing

Operation
Monitoring

Simulation
code

Real
code

Policy
enforcement

Service
farm

Policy
database

Service input

Policy
extraction

Policy
verification

Function
verification

Simulation
code generation

Policy
model

PSML-P

Function
model

PMSL-SPSML

Assembling
deployment

Service
unit

testing /
selection

Fig.8 PESOI’s approach of single model multiple analyses

Table 1 Operations and analyses on PSML-S and PSML-P models

Analyses Model and tool Comments
Automated code
generation C# code is generated from PSML-S. Code is generated by following the process flow of

the PSML-S.

Model checking
Both PSML-S and PSML-P models, as
well as the generated code, can be model
checked by BLAST [25] and BLADE[26].

As process modeling in PSML and generated code
are control-flow based, they can be checked by a
model checkers based on control flow models.

Completeness and
consistency (C&C)
checking

Both PSML-S and PSML-P models, as
well as the generated code, can be
checked for C&C at runtime[30].

The C&C checking is based on an abstracted model,
and the abstracted model can be obtained either from
the PSML-S and PSML-P, or generated code.

Policy specification,
analysis, and enforcement

Many aspects of the system can be
checked only at runtime. Policy is
interesting because it can be specified
using the same language PSML-P[27].

The issue is to ensure that constraints specified by
policies can be enforced at runtime.

Dynamic test case
generation

Test input can be generated by analyzing
the PSML-S and PSML-P models.

Various testing techniques can be used including
partition testing, random testing, Swiss cheese
testing techniques[30].

Distributed
service-oriented
simulation

The code generated can be executed as
the simulation of the model specified[24].

The difficult part is the simulation infrastructure to
coordinate the execution run of concurrent
processes.

Reliability modeling and
assessment

The reliability of application as well as
that of participating services can be
estimated using the data collected.

The architecture-based reliability models can be
used and they can be validated using the DREP
model[29].

5 PESOI Support for Dynamic Reconfigurations

Generally, three levels of reconfigurations are available in SOA, once an application is developed and
deployed, as illustrated in Fig.9:

• Rebinding: A service in the application is replaced by another service that has the same functionality.
The change required is to change the binding address related to the service. Rebinding is mainly used for
fault-tolerant computing (replacing a failed service or an unavailable) or performance upgrade;

• Re-composition: In addition to rebinding, a new service can be added to or an existing service can be
removed from the application. However, the architecture style remains unchanged. Re-composition is
mainly used for functionality and performance enhancement;

• Re-Architecture: In addition to re-composition, the architecture style can be changed, for example,
changing the bus type of connection to the layered type of architecture. The former allows any two

 1478 Journal of Software 软件学报 Vol.17, No.6, June 2006

components to communicate directly, while the latter only allows the communication between
components in the two adjacent layers. Re-architecture allows the human designer to generate a new
application at runtime time.

Fig.9 Illustration of rebinding, re-composition, re-architecture, and service farm

SOA application development starts with architecture model, in which the application is modeled by a set of
components with certain type connectivity, e.g., bus, peer to peer, and layered type, which are called architecture
patterns. The architecture model will be elaborated manually, but with the help of architectural pattern, into the
process model, in which the flows between components and selections among flows are defined. Each component in
the process model is linked to a service that can perform the required functions. To tolerate service faults, multiple
services with the same functionality can be bound to a component through a Dynamic Reconfiguration Service
(DRS) agent. Rebinding means to substitute the address of a new service for that of the service to be replaced.
Re-composition means changing the process model or the flow between the components, without changing the
architecture. Re-architecture means changing the type of connectivity among the components. To enable seamless
runtime reconfigurations, checking points are used periodically to save the status of the target system so that, when
a reconfiguration is necessary, the reconfigured system can continue its execution from the last checking point.

5.1 PESOI supports for rebinding

Rebinding is the basic and most frequently used reconfiguration supports provided by PESOI. The supports
provided to rebinding, which also apply to re-composition and re-architecture, include:

Service farm and service cache: All the evaluated services that can be used to replace one of the services
linked to the application will be placed in a service farm as backup services. The backup services can be evaluated
according to reliability, performance, user feedback, and profiles. The services in the farm with the highest ranking
will be placed in a service cache, which is used like the cache in CPU for fast rebinding. Figure 10 shows how the
service farm and service cache are established and associated to the application. First, the PESOI looks up the
service broker to find all services that can meet the requirement of each service in the application composition. The
service testing manager will then test each service. If the number of services found is large, group testing can be
applied[22]. The qualified services are put into the service farm as the backup spares and the best qualified services

 Wei-Tek Tsai, et al.: PESOI: Process Embedded Service-Oriented Architecture 1479

will be placed in the service cache.

 Service brokerApplication composition

Service
directory Registering

Searching

Service testing
manager

Testing

Service cache
Service

farm

Services from
different

service providers

…

…

…

…

…

Fig.10 Establishment of the service farm

Dynamic reconfiguration service (DRS)[28]: DRS is a framework with distributed agents which will monitor,
assess, and reconfigure the SOA application at runtime. The framework defines an agent-based, collaborative and
self-reconfigurable architecture for service-oriented distributed computing, supported by a set of DRS services and
agents, including registration service, monitoring service, and dynamic reconfiguration agents (DRS agent). DRS
agents are embedded into the application, which coordinate with each other to make the application
self-reconfigurable. In this example, two applications use the same encryption service. If one application wants to
upgrade its encryption method, it cannot simply rebinds to a different service. It has to coordinate with its
communication peers, so that they can upgrade at the same time and thus can decrypt each other’s data.

5.2 PESOI supports for re-composition

Re-Composition is a much harder problem than rebinding because not only services may be replaced, the SOA
application is actually changed. In additional to the supports listed in Section 5.1, PESOI supports the SMMA for
the re-composition, i.e., the SOA application specification can be updated by changing the model only. Once the
model is changed, it will be automatically re-verified. Then, the code can be automatically re-generated, and the
generated code can be re-validated and re-evaluated. During the code re-generation, new services may be searched,
discovered, and bound into the new application.

5.3 PESOI supports for re-architecture

In additional to the supports listed in Sections 5.1 and 5.2, PESOI uses architecture patterns to support
re-architecture. The patterns are restrictions defined in policies. The modification to the policies leads to the
architecture change and architecture patterns help the fast re-generation of the process specification in PSML-S and
PSML-P.

Because of the re-architecture, applications developed using PESOI no long have fixed architecture, such as
bus, layered, or point-to-point. The architecture can be changed after the deployment of the application.

 1480 Journal of Software 软件学报 Vol.17, No.6, June 2006

5.4 Service access and service cache

Current SOA application supports two kinds service accesses: remote invocation and code importation with
local access. The former technique binds the URL of a service into the application and each access to the service is a
remote invocation. The latter technique, called service cache, imports the executables of the services into the same
computer that runs the application or different nodes in a local distributed system or network.

Imported services eliminate the internet access and are much faster and much more reliable. However, it uses
local resources, which are often limited, and rebinding will take much longer because the entire service code needs
to be loaded and deployed into a local machine. Assume that an application needs (composed of) N external services
and has M slots (processors and memory) to import (host) external services. PESOI implements the service farm and
service cache as follows.

First, the service test manager will find services that meet the requirements of the application and put them all
into the service farm. The service farm only needs to store the service IDs and URLs of the services. The number of
services that can be listed in the service farm is practically unlimited. However, the service cache needs to store the
entire executable code of the services and thus is limited and the selection of services needs to be optimized. Table 2
lists the relationship between N and M and the PESOI placement and replacement policies in each case.

Table 2 Relationship between N and M and the PESOI placement and replacement policies

N−M
relation

No. of services
using local

accesses

No. of services
using remote

accesses

No. of backup
services using local
accesses per service

Replacement and replacement policies
in the service cache

M=0 0 N 0 All services use remote invocation

N≥M M N−M 0
M out of N services use local accesses.
Most frequently used services will be
imported

N<M N 0 (M−N)/N
All services use local access. The most
frequently used services will have more
backups

As shown in Fig.11, the cache table contains three entries: service ID, which identifies the service
corresponding to this service code; initial address where the service code is located; and the table entry number of
the next backup service. That is, for each service ID, a linked list of service code is provided to each service.

S4

S2

S1

S3

Service ID Code addressnext
S1 Code addressnext
S1 Code addressnext
S2 Code addressnext
S2 Code addressnext
S1 Code addressnext
S3 Code addressnext
S3 Code addressnull
S1 Code addressnull
S2 Code addressnull
S3 Code addressnext
S4 Code addressnull
S4 Code addressnext

S1 code 1

S1 code 2

S1 code 3

S1 code 4

S2 code 1
S2 code 2

S2 code 3

S3 code 1

S3 code 2

S3 code 3

S4 code 1

S4 code 2

Service Code

S4

S2

S1

S3

Service ID Code addressnext
S1 Code addressnext
S1 Code addressnext
S2 Code addressnext
S2 Code addressnext
S1 Code addressnext
S3 Code addressnext
S3 Code addressnull
S1 Code addressnull
S2 Code addressnull
S3 Code addressnext
S4 Code addressnull
S4 Code addressnext

S1 code 1

S1 code 2

S1 code 3

S1 code 4

S2 code 1
S2 code 2

S2 code 3

S3 code 1

S3 code 2

S3 code 3

S4 code 1

S4 code 2

Service Code

Application CompositionApplication CompositionApplication composition Service code
Service Cache TableService Cache TableService cache table

Fig.11 Service cache table and imported service code in local memory

 Wei-Tek Tsai, et al.: PESOI: Process Embedded Service-Oriented Architecture 1481

In the example showing the figure:
• N=4: Four external services are needed by the application;
• M=12: the service cache can hold 12 service code;
• Four linked lists services are formed, each for a service:

o Service S1→S11→S12→S13→S14→null
o Service S2→S21→S22→S23→null
o Service S3→S33→S32→S31→null
o Service S4→S42→S41→null

PESOI uses different length of backup services, instead of equal length, to reflect the fact that some services
may have less reliable link or services and need more frequent rebinding than the others.

6 A Case Study—Pet Shop

An application called Pet Shop is built for illustrating the development and operation phases in PESOI. An
integrated modeling environment for constructing the PSML-S model is provided, which allows the application
builders to specify the detailed system model information using PSML-S language, the application composition
logic, and the application configuration policies based on the users requirements. Figure 12 illustrates the PESOI
editor's window, which support convenient writing of the PSML-S and PSML-P specifications. For the pet shop
application, the PSML-S specification consists of 12 Actor elements, 16 Action elements, 3 Condition elements, 2
Data elements, 2 Event elements, 4 processes, and one default application composition configuration. A part of the
specification script is shown in the editor window in Fig.12. A PSML-S model can consist of the following model
elements: Actors, Actions, Attributes, Conditions, Data, Events and process that defines the flows among the model
elements[23].

Fig.12 PSML-S editor

Following the SMMA, we have performed the C&C analyses, model checking, test case generation, simulation
code generation, simulation, and testing.

Among these operations, the simulation validates the execution logic of the PSML-S model to check if it
always generates an acceptable outcome for each test case. Two user’s interfaces are implemented to observe the
simulation traces. A graphical simulation interface highlights the current point of execution in the flowchart of the

 1482 Journal of Software 软件学报 Vol.17, No.6, June 2006

PSML-S specification. Figure 13 shows a snapshot of the execution. A text simulation interface records every trace
that has been tested and the output corresponding to each input. A snapshot of the interface is given in Fig.14.

Fig.13 Graphical simulation trace animation

Fig.14 Text simulation trace

Using the graphical interface, users can visualize the simulation execution step by step from the control flow
chart of the PSML-S model. Thus users can closely observe the behavior of the PSML-S model. This feature is
extremely useful when users want to perform debugging on the PSML-S model.

The text simulation interface records the detailed system event logs. Multiple runs of simulations with different
configurations can be performed. The simulation results stored in the event log can be analyzed later for different
purposes such as detecting reliability evaluation.

7 Conclusion

This paper presents the PESOI infrastructure for SOA application development, which has the following

 Wei-Tek Tsai, et al.: PESOI: Process Embedded Service-Oriented Architecture 1483

unique features:

• PESOI takes an SMMA approach, that is, all the analyses and evaluations are based on the PSML-S
model. When the application needs to be modified, only the PSML-S model needs to be modified and the
rest of the system is automatically modified accordingly;

• PESOI supports three levels of reconfigurations, rebinding to external services, re-composition of the
application logic, and re-architecture of the application. Different level of reconfiguration requires
different level of V&V support;

• Dynamic reconfiguration needs dynamic V&V to ensure the dependability of the dynamically created
applications. PESOI enforces V&V in every phase of the development and operation.

PESOI is proposed based on the experience in several experimental and industrial projects that we have
implemented. Different mechanisms have been implemented in different projects but we have not implemented all
the V&V and evaluation mechanisms in a single project. We are currently implementing a prototype that put all
these components together in order to obtain the complete and coherent lifecycle data.

References:
[1] Arsanjani A. Service-Oriented modeling and architecture: How to identify, specify, and realize services for your SOA. Whitepaper

from IBM, Nov 2004. http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/

[2] High RJr, Kinder S, Graham S. IBM SOA foundation: An architectural introduction and overview, Version 1.0. 2005.

[3] IBM Developers Works. New to SOA and Web services. http://www-128.ibm.com/developerworks/webservices/newto/

[4] Simmons S. Introducing the WebSphere integration reference architecture: A service-based foundation for enterprise-level business

integration. IBM WebSphere Developer Technical Journal, 2005. http://www-128.ibm.com/developerworks/websphere/techjournal/

0508_simmons/0508_simmons.html

[5] Randell BA, Lhotka R. Bridge the gap between development and operations with whitehorse. MSDN magazine, 2005.

http://msdn.microsoft.com/msdnmag/issues/04/07/whitehorse/default.aspx

[6] SAP NetWeaver product introduction. http:// www.sap.com/solutions/netweaver/index.epx

[7] Brown G, Carpenter R. Successful application of service-oriented architecture across the enterprise and beyond. Int’l Technology

Journal, 2004. http://www.intel.com/technology/itj/2004/volume08issue04/art09_successful/ p07_references.htm

[8] Krafzig D, Banke K, Slama D. Enterprise SOA: Service-oriented Architecture Best Practices. New York: Prentice Hall, PTR, 2005.

[9] Erl T. Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services. New York: Prentice Hall, PTR, 2004.

[10] Mei H, Huang G, Tsai WT. Towards self-healing systems via dependable architecture and reflective middleware. In: Proc. of the

10th IEEE Int’l Workshop on Object-Oriented Real-Time Dependable Systems. Sedona, 2005. 337−344.

[11] Allen R, Douence R, Garlan D. Specifying and analyzing dynamic software architectures. In: Proc. of the ’98 Conf. on

Fundamental Approaches to Software Engineering (FASE’98). Lisbon, 1998.

[12] Dobrica L, Niemelä E. A survey on software architecture analysis methods. IEEE Trans. on Software Engineering Archive, 2002,

28(7):638-653.

[13] Bradbury JS, Cordy JR, Dingel J, Wermelinger M. A survey of self-management in dynamic architecture specifications. In: Proc. of

the Int’l Workshop on Self-Management Systems. 2004.

[14] Garlan D, Allen R. Formalizing architectural connection. In: Proc. of the 16th Int’l Conf. on Software Engineering. 1994. 71−80.

[15] Garlan D, Monroe RT, Wile D. Acme: Architectural description of component-based systems. In: Leavens GT, Sitaraman M, eds.

Foundations of Component-Based Systems. Cambridge University Press, 2000. 47−68.

[16] Inverardi P, Wolf A. Formal specification and analysis of software architectures using the chemical, abstract machine model. IEEE

Trans. on Software Engineering, Special Issue on Software Architecture, 1995,21(4):373−386.

[17] Shaw M, Garlan D. Formulations and formalisms in software architecture. Computer Science Today: Recent Trends and

Developments, LNCS 1000, Springer-Verlag, 1995.

http://www-128.ibm.com/developerworks/webservices/newto/

 1484 Journal of Software 软件学报 Vol.17, No.6, June 2006

[18] Shaw M, DeLine R, Klein DV, Ross TL, Young DM, Zelesnik G. Abstractions for software architecture and tools to support them.

IEEE Trans. on Software Engineering, 1995. 314−335.

[19] Dowling J, Cahill V. Dynamic software evolution and the k-component model. In: Proc. of the Workshop on Software Evolution,

OOPSLA. 2001.

[20] Chappell D. Enterprise Service Bus. New York: O’ Reilly Media, 2004.

[21] IBM eServer and Automatic Computing. http://www-03.ibm.com/servers/autonomic/

[22] Tsai WT, Bai X, Chen Y, Zhou X. Web service group testing with windowing mechanisms. IEEE Int’l Workshop on

Service-Oriented System Engineering (SOSE). Beijing, 2005. 213−218.

[23] Tsai WT, Paul RA, Xiao B, Cao Z, Chen Y. PSML-S: A process specification and modeling language for service oriented

computing. In: Proc. of the 9th IASTED Int’l Conf. on Software Engineering and Applications (SEA). Phoenix, 2005. 160−167.

[24] Tsai WT, Fan C, Chen Y, Paul RA. DDSOS, distributed service-oriented simulation. In: Proc. of the 39th Annual Simulation Symp.

(ANSS). Huntsville, 2006. 160−167.

[25] Henzinger TA, Jhala R, Majumdar R, Sutre G. Lazy abstraction. In: Proc. of the 29th Annual Symp. on Principles of Programming

Languages. 2002. 58−70.

[26] Huang H, Tsai WT, Paul RA, Chen Y. Automated model checking and testing for composite Web services. In: Proc. of the 8th

IEEE Int’l Symp. on Object-Oriented Real-Time Distributed Computing (ISORC). Seattle, 2005. 300−307.

[27] Tsai WT, Chen Y, Paul RA. Dynamic simulation verification and validation by policy enforcement. In: Proc. of the 38th Annual

Simulation Symp. 2005. 2005. 91−98.

[28] Tsai WT, Song W, Paul RA, Cao Z, Huang H. Services-Oriented dynamic reconfiguration framework for dependable distributed

computing. In: Proc. of the IEEE COMPSAC 2004. 2004. 554−559.

[29] Tsai WT. Service-Oriented system engineering: A new paradigm. In: Proc. of the IEEE Int’l Workshop on Service-Oriented System

Engineering (SOSE). Beijing, 2005. 3−8.

[30] Tsai WT, Wei X, Chen Y, Xiao B, Paul RA, Huang H. Developing and assuring trustworthy Web services. In: Proc. of the 7th Int’l

Symp. on Autonomous Decentralized Systems. Chengdu, 2005. 43−50.

TSAI Wei-Tek is a professor at Arizona
State University. His research areas are
service-oriented computing, embedded
systems, and system verification and
validation.

 FAN Chun received his Ph.D. degree at
Arizona State University in 2006 and is
now with Motorola, USA. His research
areas are service-oriented simulation and
software development life cycle.

CHEN Yinong is a senior research
scientist at Arizona State University. His
research areas are service-oriented
computing, embedded systems and
dependable computing.

	Introduction
	Dynamic Architecture and Lifecycle Management
	Dynamic architecture
	Lifecycle management
	IBM WebSphere integration reference architecture
	Microsoft service-oriented application development framework

	PESOI: Process-Embedded Service-Oriented Infrastructure
	Single Model Multiple Analyses (SMMA)
	PESOI Support for Dynamic Reconfigurations
	PESOI supports for rebinding
	PESOI supports for re-composition
	PESOI supports for re-architecture
	Service access and service cache

	A Case Study—Pet Shop
	Conclusion

