###
Journal of Software:2020.31(11):3559-3570

基于二跳共同邻居的无人机群体网络演化算法
于冲,司帅宗,赵海,朱剑,邵士亮,刘佳良
(东北大学 计算机科学与工程学院, 辽宁 沈阳 110819)
Network Evolution Algorithm of Unmanned Aerial Vehicle Flocking Based on Two-hop Common Neighbor
YU Chong,SI Shuai-Zong,ZHAO Hai,ZHU Jian,SHAO Shi-Liang,LIU Jia-Liang
(School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 68   Download 68
Received:May 03, 2018    Revised:November 02, 2018
> 中文摘要: 无人机集群在执行任务过程中所面临的干扰,对集群通信网络的可靠性提出了新的挑战.针对这一问题,提出了能够同时反映网络非均匀性与节点之间相似性的二跳共同邻居指标.基于该指标,使用链路预测研究方法,考虑网络初始化阶段与网络维护阶段,提出了LPTCN无人机集群网络演化算法.从数学分析与仿真实验两个方面对算法的有效性进行验证,结果显示,使用LPTCN网络演化算法所构建的无人机集群通信网络具有良好的生存性和抗毁性,在随机攻击和蓄意攻击情况下均能保证通信网络的可靠.
Abstract:The disturbance facing by UAV (unmanned aerial vehicle) flocking in the process of carrying out tasks post a new challenge to the reliability of the flocking communication network. To this end, a two-hop common neighbor metric is proposed to reflect the heterogeneity of network and the similarity between nodes simultaneously. Considering network initialization stage and network maintenance stage, a LPTCN (link prediction based on two-hop common neighbors) network evolution algorithm is proposed. Mathematical analysis and simulation experiments are applied to verify the validity of the algorithm. The results show that UAV flocking communication network constructed by the LPTCN network evolution algorithm has great survivability and invulnerability, and the communication network reliability can be guaranteed in the case of random attack and deliberate attack.
文章编号:     中图分类号:TP393    文献标志码:
基金项目:国家级重大科技创新项目(N161608001) 国家级重大科技创新项目(N161608001)
Foundation items:National Major Science and Technology Innovation Project (N161608001)
Reference text:

于冲,司帅宗,赵海,朱剑,邵士亮,刘佳良.基于二跳共同邻居的无人机群体网络演化算法.软件学报,2020,31(11):3559-3570

YU Chong,SI Shuai-Zong,ZHAO Hai,ZHU Jian,SHAO Shi-Liang,LIU Jia-Liang.Network Evolution Algorithm of Unmanned Aerial Vehicle Flocking Based on Two-hop Common Neighbor.Journal of Software,2020,31(11):3559-3570