Journal of Software:2020.31(10):3251-3265

(上海交通大学 软件学院, 上海 200240)
Physically-based and Data-driven Fluid Simulation Research
XIAO Xiang-Yun,YANG Xu-Bo
(School of Software, Shanghai Jiaotong University, Shanghai 200240, China)
Chart / table
Similar Articles
Article :Browse 54   Download 229
Received:June 14, 2018    Revised:October 11, 2018
> 中文摘要: 主要针对近年来流行的基于物理及数据驱动的各种流体动画模拟算法及其应用给出了一个全面的前沿性综述.首先,对传统的基于物理的流体模拟加速方法进行了综述和总结,同时给出了此类方法中各种算法的优劣性分析;其次,对现有的基于数据驱动的多种算法进行了综述和分析.特别地,将现有的数据驱动方法归结为3类,即数据插值法、数据预计算方法和基于深度学习的方法.并且,进一步讨论了基于数据驱动的流体动画模拟算法的几个关键问题以及其研究趋势与方向.
Abstract:This paper gives a comprehensive overview of the popular animation simulation algorithms based on physical and data-driven methods as well as their applications in recent years. Firstly, the traditional physically-based acceleration fluid simulation methods are summarized, covering both their advantages and disadvantages. Then, the existing data-driven algorithms applied in fluid simulation are summarized and analyzed. In particular, the existing data-driven methods are sumed up into three types, namely, interpolation methods, methods based on pre-computed data, and deep learning methods. Further, some key points are given about the data-driven methods as well as the research trends and directions.
文章编号:     中图分类号:TP391    文献标志码:
基金项目:国家重点研发计划(2018YFB1004902);国家自然科学基金(61772329) 国家重点研发计划(2018YFB1004902);国家自然科学基金(61772329)
Foundation items:Natural Key Research and Development of Program of China (2018YFB1004902); National Natural Science Foundation of China (61772329)
Reference text:


XIAO Xiang-Yun,YANG Xu-Bo.Physically-based and Data-driven Fluid Simulation Research.Journal of Software,2020,31(10):3251-3265