###
Journal of Software:2019.30(11):3340-3354

基于动态分类的隐喻识别方法
苏畅,付泽,郑发魁,陈怡疆
(厦门大学 信息学院 人工智能系, 福建 厦门 361005;厦门大学 信息学院 计算机科学系, 福建 厦门 361005)
Method of Metaphor Recognition Based on Dynamic Categorization
SU Chang,FU Ze,ZHENG Fa-Kui,CHEN Yi-Jiang
(Cognitive Science Department, School of Informatics, Xiamen University, Xiamen 361005, China;Computer Science Department, School of Informatics, Xiamen University, Xiamen 361005, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 55   Download 51
Received:December 26, 2017    Revised:April 24, 2018
> 中文摘要: 隐喻计算是自然语言处理领域中的重要问题.尝试以差异性计算为基础,结合语言、心理和认知的角度对英语隐喻识别进行深入分析和探索.对人类而言,隐喻识别是一个动态分类的过程,动态分类是从多个角度来度量事物之间的差异性.研究了如何模仿人类来获取概念的特征、选择分类角度、在特定分类角度下计算差异性,并进行了英语名词性隐喻识别的实验.该方法对隐喻/常规表达识别的准确率达到85.4%,实验结果表明,该方法是有效的.
中文关键词: 隐喻识别  差异性  属性抽取  动态分类
Abstract:Metaphor computation is an important problem of natural language processing. In this work, an intensive study of metaphor identification is carried out from different angles, including linguistical, psychological, and cognitive angles. Human categorization is a dynamic process of measuring difference between objects from different angles. Therefore, an idea about dynamic categorization is proposed from multiple angles to recognize metaphors, which is different from traditional metaphor recognition methods. The research involves three aspects:how to get features of concepts, how to choose angles by features, and how to measure difference based on a specific angle. Then, an experiment of nominal metaphor recognition is performed based on dynamic categorization. The experimental results show that the accuracy of metaphorical/literal references recognition can reach 85.4%. It supports the validity, efficiency of the proposed method.
文章编号:     中图分类号:TP18    文献标志码:
基金项目:国家自然科学基金(61075058) 国家自然科学基金(61075058)
Foundation items:National Natural Science Foundation of China (61075058)
Reference text:

苏畅,付泽,郑发魁,陈怡疆.基于动态分类的隐喻识别方法.软件学报,2019,30(11):3340-3354

SU Chang,FU Ze,ZHENG Fa-Kui,CHEN Yi-Jiang.Method of Metaphor Recognition Based on Dynamic Categorization.Journal of Software,2019,30(11):3340-3354