Journal of Software:2020.31(2):421-438

(智能通信软件与多媒体北京市重点实验室(北京邮电大学), 北京 100876;北京邮电大学 计算机学院, 北京 100876)
Local Event Recommendation Algorithm Based on Collective Contextual Relation Learning
LAI Yi-An,ZHANG Yu-Jie,DU Yu-Lu,MENG Xiang-Wu
(Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia(Beijing University of Posts and Telecommunications), Beijing 100876, China;School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China)
Chart / table
Similar Articles
Article :Browse 110   Download 109
Received:December 25, 2017    Revised:March 22, 2018
> 中文摘要: 新兴的基于活动的社交网络以活动为核心,结合线上关系与线下活动促进用户真实、有效的社交关系的形成,但过多的活动信息会使用户难以分辨和选择.结合上下文进行个性化同城活动推荐,是解决活动信息过载问题的一种有效手段.然而大部分现有的同城活动推荐算法都是从用户参与活动记录中间接统计用户对上下文信息的偏好,忽略了两者之间潜在的交叉影响关系,从而影响了推荐结果的有效性.为了解决用户参与活动偏好与上下文信息潜在交叉影响关系利用不足的问题,提出了一种基于协同上下文关系学习的同城活动推荐算法(colletivecontextual relation learning,简称CCRL).首先,对用户参与活动记录和活动主办方、活动内容、活动地点、举办时间等相关上下文信息进行关系建模;然后,采用多关系贝叶斯个性化排序学习方法进行协同上下文关系学习及同城活动推荐.Meetup数据集上的实验结果表明,该算法在多项指标上均优于现有的主流活动推荐算法.
Abstract:The newly emerging event-based social network (EBSN) based on the event as the core combines the online relationship with offline activities to promote the formation of real and effective social relationship among users. However, excessive activity information would make users difficult to distinguish and choose. The context-aware local event recommendation is an effective solution for the information overload problem, but most of existing local event recommendation algorithms only learns users' preference for contextual information indirectly from statistics of historical event participation and ignores latent correlations among them, which impacts on recommendation effectiveness. To take full advantage of latent correlations between users' event preference and contextual information, the proposed collective contextual relation learning (CCRL) algorithm models relations among users' participation records and related contextual information such as event organizer, description text, venue, and starting time. Then multi-relational Bayesian personalized ranking (MRBPR) algorithm is adapted for collective contextual relation learning and local event recommendation. Experiment results on Meetup dataset demonstrate that proposed algorithm outperforms state-of-the-art local event recommendation algorithms in terms of many metrics.
文章编号:     中图分类号:TP311    文献标志码:
基金项目:北京市教育委员会共建项目 北京市教育委员会共建项目
Foundation items:Mutual Project of Beijing Municipal Education Commission, China
Reference text:


LAI Yi-An,ZHANG Yu-Jie,DU Yu-Lu,MENG Xiang-Wu.Local Event Recommendation Algorithm Based on Collective Contextual Relation Learning.Journal of Software,2020,31(2):421-438