Journal of Software:2018.29(5):1471-1514

(智能信息技术北京市重点实验室(北京理工大学), 北京 100081;北京理工大学 计算机学院, 北京 100081;商丘师范学院 计算机学院, 河南 商丘 476000)
Survey on Medical Image Computer Aided Detection and Diagnosis Systems
ZHENG Guang-Yuan,LIU Xia-Bi,HAN Guang-Hui
(Beijing Laboratory of Intelligent Information Technology(Beijing Institute of Technology), Beijing 100081, China;School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;School of Computer Science and Technology, Shangqiu Normal University, Shangqiu 476000, China)
Chart / table
Similar Articles
Article :Browse 2858   Download 10006
Received:January 20, 2017    Revised:July 26, 2017
> 中文摘要: 计算机辅助检测/诊断(computer-aided detection/diagnosis,简称CAD)能够提高诊断的准确性,减少假阳性的产生,为医生提供有效的诊断决策支持.旨在分析计算机辅助诊断工具的最新发展.以CAD研究较多的四大致命性癌症的发病医学部位为主线,按照不同的成像技术和病类,对目前CAD在不同医学图像领域的应用进行了较为详尽的综述,从图像数据集、算法和评估方法等方面做多维度梳理.最后分析了医学图像CAD系统研究领域目前存在的问题,并对此领域的研究趋势和发展方向进行展望.
Abstract:Computer aided detection/diagnosis (CAD) can improve the accuracy of diagnosis,reduce false positive,and provide decision supports for doctors.The main purpose of this paper is to analyze the latest development of computer aided diagnosis tools.Focusing on the top four fatal cancer's incidence positions,major recent publications on CAD applications in different medical imaging areas are reviewed in this survey according to different imaging techniques and diseases.Further more,multidimentional analysis is made on the researches from image data sets,algorithms and evaluation methods.Finally,existing problems,research trend and development direction in the field of medical image CAD system are discussed.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(60973059,81171407);教育部新世纪优秀人才支持计划(NCET-10-0044) 国家自然科学基金(60973059,81171407);教育部新世纪优秀人才支持计划(NCET-10-0044)
Foundation items:National Natural Science Foundation of China (60973059, 81171407); Program for New Century Excellent Talents in University of the Ministry of Education of China (NCET-10-0044)
Reference text:


ZHENG Guang-Yuan,LIU Xia-Bi,HAN Guang-Hui.Survey on Medical Image Computer Aided Detection and Diagnosis Systems.Journal of Software,2018,29(5):1471-1514