Journal of Software:2018.29(4):1039-1048

(大数据管理与分析方法研究北京市重点实验室(中国人民大学 信息学院), 北京 100872)
Deep Learning for Parameter Recognition in Commodity Images
DING Ming-Yu,NIU Yu-Lei,LU Zhi-Wu,WEN Ji-Rong
(Beijing Key Laboratory of Big Data Management and Analysis Methods(School of Information, Renmin University of China), Beijing 100872, China)
Chart / table
Similar Articles
Article :Browse 2711   Download 4074
Received:April 29, 2017    Revised:June 26, 2017
> 中文摘要: 计算机计算性能的提升使得深度学习成为了可能.作为计算机视觉领域的重要发展方向之一的目标检测也开始结合深度学习方法并广泛应用于各行各业.受限于网络的复杂度和检测算法的设计,目标检测的速度和精度成为一个trade-off.目前电商领域的飞速发展产生了大量包含商品参数的图片,使用传统方法难以有效地提取出图片中的商品参数信息.针对这一问题,提出了一种将深度学习检测算法和传统OCR技术相结合的方法,在保证识别速度的同时大大提升了识别的精度.所研究的问题包括检测模型、针对特定数据训练、图片预处理以及文字识别等.首先比较了现有的目标检测算法,权衡其优缺点,然后使用YOLO模型完成检测任务,并针对YOLO模型中存在的不足进行了一定的改进和优化,得到了一个专用于检测图片中商品参数的目标检测模型,最后使用tesseract完成文字提取任务.在将整个流程结合到一起后,该系统不仅有着较好的识别精度,而且是高效和健壮的.最后讨论了优势和不足之处,并指出了未来工作的方向.
Abstract:The improvements of computing performance make deep learning possible. As one of the important research directions in the field of computer vision, object detection has combined with deep learning methods and is widely used in all walks of life. Limited by the complexity of the network and the design of the detection algorithm, the speed and precision of the object detection becomes a trade-off. At present, the rapid development of electronic commerce has produced a large number of pictures containing the product parameters. The traditional method is hard to extract the information of the product parameters in the picture. This paper presents a method of combining deep learning detection algorithm with the traditional OCR technology to ensure the detection speed and at the same time greatly improve the accuracy of recognition. The paper focuses the following problems:The detection model, training for specific data, image preprocessing and character recognition. First, existing object detection algorithms are compared and their advantages and disadvantages are assessed. While the YOLO model is used to do the detection work, some improvements is proposed to overcome the shortcomings in the YOLO model. In addition, an object detection model is designed to detect the product parameters in images. Finally, tesseract is used to do the character recognition work. The experimental results show that the new system is efficient and effective in parameter recognition. At the end of this paper, the innovation and disadvantage of the presented method are discussed.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61573363);北京市科委类脑计算专项(Z171100000117009);中国人民大学预研委托项目(15XNLQ01);中国人民大学拔尖创新人才培育资助计划 国家自然科学基金(61573363);北京市科委类脑计算专项(Z171100000117009);中国人民大学预研委托项目(15XNLQ01);中国人民大学拔尖创新人才培育资助计划
Foundation items:National Natural Science Foundation of China (61573363); Beijing Brain Research Project of Beijing Municipal Science & Technology Commission (Z171100000117009); Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (15XNLQ01); Outstanding Innovative Talents Cultivation Funded Programs of Renmin University of China
Reference text:


DING Ming-Yu,NIU Yu-Lei,LU Zhi-Wu,WEN Ji-Rong.Deep Learning for Parameter Recognition in Commodity Images.Journal of Software,2018,29(4):1039-1048