###
Journal of Software:2018.29(4):1017-1028

低秩重检测的多特征时空上下文的视觉跟踪
郭文,游思思,张天柱,徐常胜
(山东工商学院 信息与电子工程学院, 山东 烟台 264009;山东省高校感知技术与控制重点实验室, 山东 烟台 264009;模式识别国家重点实验室(中国科学院 自动化研究所), 北京 100190)
Object Tracking via Low-Rank Redetection Based Multiple Feature Fusion Spatio-Temporal Context Learning
GUO Wen,YOU Si-Si,ZHANG Tian-Zhu,XU Chang-Sheng
(School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264009, China;Key Laboratory of Sensing Technology and Control in Universities of Shandong, Yantai 264009, China;National Laboratory of Pattern Recognition(Institute of Automation, The Chinese Academy of Sciences), Beijing 100190, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 1337   Download 1093
Received:April 26, 2017    Revised:June 26, 2017
> 中文摘要: 时空上下文跟踪算法充分地利用空间上下文中包含的结构信息能够有效地对目标进行跟踪,实时性优良.但该算法仅利用单一的灰度信息,使得目标的表观表达缺乏判别性,而且该方法在由于遮挡等问题造成的跟踪漂移后无法进行初始化.针对时空上下文算法存在的弱点,提出了一种基于低秩重检测的多特征时空上下文跟踪方法.首先,利用多特征对时空上下文进行多方面的提取,构建复合时空上下文信息,充分利用目标周围的特征信息,提高目标表观表达的有效性.其次,利用简单、有效的矩阵分解方式将跟踪到的历史跟踪信息进行低秩表达,将其引入有效的在线重检测器中来保持跟踪结构的一致稳定性,解决了跟踪方法在跟踪失败后的重定位问题,在一系列跟踪数据集上的实验结果表明,该算法与原始算法及当前的主流算法相比有更好的跟踪精度与鲁棒性,且满足实时性要求.
Abstract:The spatio-temporal tracking (STC) algorithm can effectively track object using the structural information contained in the context around the object in real time. However the algorithm only exploits single gray object feature information in order to make the object representation discriminative. Moreover, it fails to initialize when tracking drift due to occlusion problems. Aiming at the existing weaknesses of the spatio-temporal context algorithm, a novel low-rank redetection based multiple feature fusion STC tracking algorithm is proposed in this paper. Firstly, multiple feature fusion based spatio-temporal context is extracted to construct complicated spatio-temporal context information, which improves the effectiveness of object representation by taking full advantage of the feature information around the object. Then, a simple and effective matrix decomposition method is used to give a low rank expression of the history tracking information, which can be embedded into the online detector. As a result, the uniform structure stability of the tracking algorithm is maintained to solve the relocation problem after the tracking failure. Experimental results on a series of tracking benchmark show the proposed algorithm has a better tracking precision and robustness than several stale-of-the-art methods, and it also have a good real-time performance.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61572296,61472227,61303086,61328205),山东省自然科学基金(ZR2015FL020);模式识别国家重点实验室开放课题(201600024) 国家自然科学基金(61572296,61472227,61303086,61328205),山东省自然科学基金(ZR2015FL020);模式识别国家重点实验室开放课题(201600024)
Foundation items:National Natural Science Foundation of China (61572296, 61472227, 61303086, 61328205); Natural Science Foundation of Shandong Province, China (ZR2015FL020), Open Project Program of the National Laboratory of Pattern Recognition (201600024)
Reference text:

郭文,游思思,张天柱,徐常胜.低秩重检测的多特征时空上下文的视觉跟踪.软件学报,2018,29(4):1017-1028

GUO Wen,YOU Si-Si,ZHANG Tian-Zhu,XU Chang-Sheng.Object Tracking via Low-Rank Redetection Based Multiple Feature Fusion Spatio-Temporal Context Learning.Journal of Software,2018,29(4):1017-1028