Journal of Software:2017.28(11):3018-3029

(北京邮电大学 软件学院, 北京 100876;可信分布式计算与服务教育部重点实验室(北京邮电大学), 北京 100876)
Deep Learning Model for Diabetic Retinopathy Detection
(School of Software, Beijing University of Posts and Telecommunications, Beijing 100876, China;Key Laboratory of Trustworthy Distributed Computing and Service(Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876, China)
Chart / table
Similar Articles
Article :Browse 1417   Download 3186
Received:January 03, 2017    Revised:April 11, 2017
> 中文摘要: 近年来,深度学习在计算机视觉方面取得了巨大的进步,并在利用计算机视觉完成医学影像的阅片工作方面展现出了良好的应用前景.针对糖尿病眼底病变筛查工作,通过构建两级深度卷积神经网络,完成了原始照片的特征提取、特征组合和结果分类,最终得出筛查结果.通过与医生的诊断结果进行比较,证明了模型的输出结果与医生诊断结果之间具有高度的一致性.同时,提出了利用弱监督学习进行细粒度图像分类的改进方法.最后,对未来研究的方向进行了展望.
Abstract:In recent years, deep learning in the computer vision has made great progress, showing good application prospects in medical image reading. In this paper, a model with construction of two-level deep convolution neural network is designed to achieve feature extraction, feature blend, and classification of the fundus photo. By comparing with doctor's diagnosis, it is shown that the output of the model is highly consistent with the doctor's diagnosis. In addition, an improved method of fine-grained image classification using weak supervised learning is proposed. Finally, future research direction is discussed.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2016YFF0201003) 国家重点研发计划(2016YFF0201003)
Foundation items:National Key Research and Development Program of China (2016YFF0201003)
Reference text:


PANG Hao,WANG Cong.Deep Learning Model for Diabetic Retinopathy Detection.Journal of Software,2017,28(11):3018-3029