###
Journal of Software:2018.29(4):1115-1130

面向微博主题的可视分析研究
王臻皇,陈思明,袁晓如
(机器感知与智能教育部重点实验室(北京大学), 北京 100871;北京大学 信息科学技术学院, 北京 100871;机器感知与智能教育部重点实验室(北京大学), 北京 100871;北京大学 信息科学技术学院, 北京 100871;北京市虚拟仿真与可视化工程技术研究中心(北京大学), 北京 100871)
Visual Analysis for Microblog Topic Modeling
WANG Zhen-Huang,CHEN Si-Ming,YUAN Xiao-Ru
(Key Laboratory of Machine Perception of Ministry of Education(Peking University), Beijing 100871, China;School of Electoronic Engineering and Computer Science, Peking University, Beijing 100871, China;Key Laboratory of Machine Perception of Ministry of Education(Peking University), Beijing 100871, China;School of Electoronic Engineering and Computer Science, Peking University, Beijing 100871, China;Beijing Engineering Technology Research Center of Virtual Simulation and Visualization(Peking University), Beijing 100871, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 1763   Download 1831
Received:October 11, 2016    Revised:November 25, 2016
> 中文摘要: 随着微博的发展,其影响力日益增大,对微博主题内容进行分析具有重要的价值.主题模型技术能够从文本数据中提取主题,但是,由于微博文本短、随意性大、信息量小等特点,微博主题的分析具有一定的难度.提出了一个微博主题可视分析系统,利用多种互相关联的视图与丰富的交互手段,支持用户对主题模型结果进行分析与探索.系统结合了微博数据的特点,引入微博用户与时间因素,支持分析者从多角度对微博主题进行全面分析.系统支持用户在主题可视分析的基础上,通过交互操作对主题进行编辑,从而改进主题模型,提高模型的准确性和可靠性.案例分析结果表明,提出的系统可以有效地帮助用户分析微博主题和修正主题.
Abstract:With the development and increasing impact of social media (e.g. microblog), it is critical to analyze the topic of the microblog. Topic modeling can extract topics from text data. However, it is a challenging task on the microblog data, due to the short content, heavy noises and limited amount of information in each microblog message. This article proposes a visual analytics system for microblog topic modeling. The proposed system enables the visual exploration and analysis process of the topic modeling results of microblogs with multiple linked views and interactions. It considers user behaviors and time effects in the topic modeling process. Users can analyze topics of microblog from multiple perspectives. The system also supports interactive topic editing to improve the topic modeling results in accuracy and reliability. The case study confirms that the described system can effectively help users analyze the Sina Weibo contents interactively.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61672055);国家重点基础研究发展计划(973)(2015CB352503);国家重点研发计划(2016QY02D0304) 国家自然科学基金(61672055);国家重点基础研究发展计划(973)(2015CB352503);国家重点研发计划(2016QY02D0304)
Foundation items:National Natural Science Foundation of China (61672055); National Basic Research Program of China (973) (2015CB352503); National Key Research and Development Program of China (2016QY02D0304)
Reference text:

王臻皇,陈思明,袁晓如.面向微博主题的可视分析研究.软件学报,2018,29(4):1115-1130

WANG Zhen-Huang,CHEN Si-Ming,YUAN Xiao-Ru.Visual Analysis for Microblog Topic Modeling.Journal of Software,2018,29(4):1115-1130