Journal of Software:2017.28(8):2161-2174

(软件工程国家重点实验室(武汉大学), 湖北 武汉 430072;武汉大学 计算机学院, 湖北 武汉 430072;武汉大学 国际软件学院, 湖北 武汉 430072;云南大学 信息工程学院, 云南 昆明 650091)
Group-Based Method for Influence Maximization
(State Key Laboratory of Software Engineering(Wuhan University), Wuhan 430072, China;Computer School, Wuhan University, Wuhan 430072, China;International School of Software, Wuhan University, Wuhan 430072, China;School of Information Science and Engineering, Yunnan University, Kunming 650091, China)
Chart / table
Similar Articles
Article :Browse 1568   Download 1115
Received:November 09, 2015    Revised:March 18, 2016
> 中文摘要: 影响最大化旨在从给定的社会网络中寻找出一组影响力最大的子集.现有工作大都在假设实体点(个人或博客等)影响关系已知的情况下,关注于分析单个实体点的影响力.然而在一些实际场景中,人们往往更关注区域或人群等这类团体的组合影响力,如户外广告、电视营销、疫情防控等.研究了影响力团体的选择问题:(1)基于团体的关联发现,建立了团体传播模型GIC(group independent cascade);(2)根据GIC模型,给出了贪心算法CGIM(cascade group influence maximization),搜索最具影响力的top-k团组合.在人工数据和真实数据上,实验验证了该方法的效果和效率.
Abstract:Influence maximization aims at finding a set of influential individuals (i.e. users, blog etc.) in a social network. Most of the existing work focused on the influence of individuals under the hypothesis that the influence relationship between the individuals is known in advance. Nonetheless, it is often the case that groups (i.e. area, crowd etc.) are only natural targets of initial convincing attempts in many real-world scenarios, such as billboards, television marketing and plague prevention. In this paper, the problem of locating the most influential groups in a network is addressed. (1) Based on the discovery of the group associations, GIC (group independent cascade) model is proposed to simulate the influence propagation process at the group granularity. (2) A greedy algorithm called CGIM (cascade group influence maximization) is introduced to determine the top-k influential groups under GIC model. Experimental results on both synthetic and real datasets verify the effectiveness and efficiency of the presented method.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61232002,61502347,61202033,61572376);中央高校基本科研业务费专项资金(2042015kf00 38) 国家自然科学基金(61232002,61502347,61202033,61572376);中央高校基本科研业务费专项资金(2042015kf00 38)
Foundation items:National Natural Science Foundation of China (61232002, 61502347, 61202033, 61572376); Fundamental Research Funds for the Central Universities (2042015kf0038)
Reference text:


ZHANG Ping,WANG Li-Wei,PENG Zhi-Yong,YUE Kun,HUANG Hao.Group-Based Method for Influence Maximization.Journal of Software,2017,28(8):2161-2174