Rapid 3D Modeling of Porous Metal Fiber Sintered Felt with Multi-Scale Morphology
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (51505152, 51275177); China Postdoctoral Science Foundation (2015M580719, 2016T90780); Natural Science Foundation of Guangdong Province, China (2016A030310409); State Key Laboratory of CAD&CG (Zhejiang University) (A1508)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Porous metal fiber sintered felt is a type of new functional materials. This paper focuses on implementing the digital design of its multi-scale morphology. First, considering the self-affine fractal characteristics of the microtopography of machined metal surfaces, a previously developed mathematical method combining Weierstrass-Mandelbrot fractal geometry and triply periodic minimal surface is extended. In addition, the marching cubes algorithm is optimized according to the structure characteristics of sintered felt, so as to improve the efficiency of establishing its geometrical model. Meanwhile, a parameter representation method is introduced to drive the fractal TPMS model to adjust and control the morphology of sintered felt. The sample analyses warrant the higher efficiency of the proposed method and the ability of modeling and controlling multi-scale morphology of sintered felt. The effectiveness of the proposed model is also validated through numerical simulation and comparisons with other methods. The proposed approach can be directly used to describe the multi-scale morphology of other functional materials, thus facilitating the development of the corresponding numeric simulation technology.

    Reference
    Related
    Cited by
Get Citation

徐志佳,王清辉,李静蓉.多孔金属纤维烧结板多尺度形貌的快速三维建模.软件学报,2016,27(10):2622-2631

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 20,2016
  • Revised:March 25,2016
  • Adopted:
  • Online: August 11,2016
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063