###
Journal of Software:2017.28(2):429-442

基于模型预测控制的数据中心节能调度算法
赵小刚,胡启平,丁玲,沈志东
(武汉大学 国际软件学院 软件工程系, 湖北 武汉 430079;湖北科技学院 计算机科学与技术学院, 湖北 咸宁 437100)
Energy Saving Scheduling Strategy Based on Model Prediction Control for Data Centers
ZHAO Xiao-Gang,HU Qi-Ping,DING Ling,SHEN Zhi-Dong
(Department of Software Engineering, Int'l School of Software, Wuhan University, Wuhan 430079, China;College of Computer Science and Technology, Hubei University of Science and Technology, Xianning, 437100, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 1248   Download 1459
Received:January 14, 2015    Revised:December 22, 2015
> 中文摘要: 如今日益增长的数据中心能耗,特别是冷却系统能耗已日益受到重视,降低系统能耗能够减少数据中心碳排放.提出了一种基于模型预测控制(model prediction control,简称MPC)的节能调度策略,该策略可以有效地减小数据中心冷却能耗.该方法采用动态电压频率调节技术来调整计算节点频率,从而减少节点间的热循环;所有节点的峰值温度可被保持在温度阈值下,在任务的执行中稳态误差较小.该方法可以通过动态频率调节来抑制由于负载类型变化造成的模型不确定性带来的内部扰动,分析结果表明,基于模型预测的温控算法系统开销较小,具有良好的可扩展性.基于该算法设计的控制器能够有效地降低输入温度,提高数据中心能耗效率.通过在实际数据中心内运行的模拟网上书店,该方法与安全最小热传递算法和传统反馈温控算法这两种经典方法相比,无论是在正常条件下还是在扰动存在的情况下都能取得较好的温度抑制效果,系统性能如吞吐率也达到最大.在相同的负载条件下,该方法能够获得最小的输入峰值温度和最小的冷却能耗.
Abstract:Today the ever-growing energy cost, especially cooling cost of data centers, draws much attention for carbon emission reduction. This paper presents an energy efficient scheduling strategy based on model prediction control (MPC) to reduce cooling cost in data centers. It uses dynamic voltage frequency scaling technology to adjust the frequencies of computing nodes of a cluster in a way to minimize heat recirculation effect among the nodes. The maximum inlet temperature of nodes can be kept under temperature limits with little stable error. The method can also deal with inner disturbance (system model variation) by dynamic frequencies regulation among the nodes. Analysis shows good scalability and small overhead, making the method applicable in huge data centers. A temperature-aware controller is designed to reduce inlet temperatures to improve energy efficiency of data centers. Using a simulated online bookstore run in a heterogeneous data center the proposed method is proved to have larger throughput in both normal and emergency cases compared with existing solutions such as safe least recirculation heat temperature controller and traditional feedback temperature controller. The MPC-based scheduling method also has less inlet temperature and cooling cost comparing with those two methods under same workload.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61003185);湖北省自然科学基金(201FFB04505) 国家自然科学基金(61003185);湖北省自然科学基金(201FFB04505)
Foundation items:National Natural Science Foundation of China (61003185); Natural Science Foundation of Hubei Province of China (201FFB04505)
Reference text:

赵小刚,胡启平,丁玲,沈志东.基于模型预测控制的数据中心节能调度算法.软件学报,2017,28(2):429-442

ZHAO Xiao-Gang,HU Qi-Ping,DING Ling,SHEN Zhi-Dong.Energy Saving Scheduling Strategy Based on Model Prediction Control for Data Centers.Journal of Software,2017,28(2):429-442